PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fabrication and amplified spontaneous emission behavior of FAPbBr3 perovskite quantum dots in solid polymer rods

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Formamidinium lead tribromide (FAPbBr3) perovskite quantum dot (PQ-Dot) solution was incorporated in a polymer sol, which was used to fabricate solid nanocomposite rods and disks. The solid nanocomposite samples were studied by different characterization techniques. The absorption, emission, and excitation spectra of the PQ-Dot in the solid rods/disks were quite significant as compared to the spectra of the PQ-Dot solution. Scanning electron microscopy (SEM) was used to inspect the structural morphology of the PQ-Dot in the solid environment. The PQ-Dot particles were evidently present in the solid matrix and were confirmed by the SEM images and energy dispersive X-ray spectroscopy (EDX) spectra. The size of the PQ-Dots was examined by transmission electron microscopy (TEM). The majority of the particles were about 3–8 nm in size. The spontaneous and stimulated emission profiles of the solid composite rods/disks were studied using pumping energy ranging from 2 μJ to 18 μJ from a high-power picosecond neodymium-doped yttrium aluminum garnet (Nd:YAG) tunable laser system. The observed emission signal was quite significant. The emission peak of the PQ-Dot solution had a slight change when it was included in the solid matrix. Amplified spontaneous emission (ASE) behavior was obtained from the PQ-Dot composite rod. The ASE peaks were quite steady at different levels of excitation energy. ASE was achieved at low threshold energy. The composite rod with ASE behavior indicates that it is a promising composite material that can be used to achieve lasing in the future. The ASE obtained from the composite rods/disks may improve to achieve lasing if a high concentration of PQ-Dot solution is used in the matrix.
Wydawca
Rocznik
Strony
84--100
Opis fizyczny
Bibliogr. 81 poz., rys., tab.
Twórcy
  • Department of Physics, Faculty of Science, Islamic University, Madinah 42351, Saudi Arabia
  • Department of Physics, Faculty of Science, Islamic University, Madinah 42351, Saudi Arabia
Bibliografia
  • [1] Murawski C, Leo K, Gather MC. Efficiency roll-off in organic light-emitting diodes. Adv Mater. 2013;25:6801. https://doi.org/10.1002/adma.201301603
  • [2] Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, et al. Light-emitting diodes based on conjugated polymers. Nature. 1990;347:539. https://doi.org/10.1038/347539a0
  • [3] Coe S, Woo WK, Bawendi M, Bulović V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature. 2002;420:800. https://doi.org/10.1038/nature01217
  • [4] Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Science. 1996;271(5251):933. https://doi.org/10.1126/science.271.5251.933
  • [5] Shirasaki Y, Supran GJ, Bawendi MG, Bulovic V. Emergence of colloidal quantum-dot light-emitting technologies. Nat Photonics. 2013;7:13. https://doi.org/10.1038/nphoton.2012.328
  • [6] Sjoerd AV, Pablo PB, Natalia Y, Mingjie L, Tze CS, Nripan M, et al. Perovskite materials for light-emitting diodes and lasers. Adv Mater. 2016;28(22):6804–34. https://doi.org/10.1002/adma.201600669
  • [7] Xing G, Mathews N, Lim SS, Yantara N, Liu X, Sabba D, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat Mater. 2014;13:476–80. https://doi.org/10.1038/nmat3911
  • [8] Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP, Leijtens T, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science. 2013;342:341. https://doi.org/10.1126/science.1243982
  • [9] Tan ZK, Moghaddam RS, Lai ML, Docampo P, Higler R, Deschler F, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol 2014;9(9):687–92. https://doi.org/10.1038/nnano.2014.149
  • [10] Li G, Rivarola FWR, Davis Nathaniel JLK, Bai S, Jellicoe TC, de la Penã F, et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv Mater. 2016;28(18):3528–34. https://doi.org/10.1002/adma.201600064
  • [11] Cho H, Jeong SH, Park MH, Kim YH, Wolf C, Lee CL, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science. 2015;350(6265):1222. https://doi.org/10.1126/science.aad1818
  • [12] Li C, Lu X, Ding W, Feng L, Gao Y, Guo Z. Formability of ABX3 (X=F, Cl, Br, I) halide perovskites. Acta Crystallogr Sect B Struct Sci. 2008;64:702. https://doi.org/10.1107/S0108768108032734
  • [13] Green MA, Ho-Baillie A, Snaith HJ. The emergence of perovskite solar cells. Nat Photonics. 2014;8:506. https://doi.org/10.1038/nphoton.2014.134
  • [14] Kieslich G, Sun S, Cheetham AK. Solid-state principles applied to organic-inorganic perovskites: new tricks for an old dog. Chem Sci. 2014;5:4712–15. https://doi.org/10.1039/C4SC02211D
  • [15] Lee JW, Kim DH, Kim HS, Seo SW, Cho SM, Park, NG. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv Energy Mater. 2015;5. https://doi.org/10.1002/aenm.201501310
  • [16] Giles EE, Daniel B, Joel T, Samuel DS, Michael BJ, Trystan W, et al. Efficient, semitransparent neutral-colored solar cells based on microstructured formamidinium lead trihalide perovskite. J Phys Chem Lett. 2015;6(1):129–38. https://doi.org/10.1021/jz502367k
  • [17] Mitzi DB, Field CA, Schlesinger Z, Laibowitz RB. Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3. J Solid State Chem. 1995;114:159–63. https://doi.org/10.1006/jssc.1995.1023
  • [18] Chondroudis K, Mitzi DB. Electroluminescence from an organic-inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers. Chem Mater. 1999;11:3028–30. https://doi.org/10.1021/cm990561t
  • [19] Pedesseau L. et al. Electronic properties of 2D and 3D hybrid organic/inorganic perovskites for optoelectronic and photovoltaic applications. Opt Quantum Electron. 2014;46;1225–32. https://doi.org/10.1007/s11082-013-9823-9
  • [20] Kumawat NK, Dey A, Kumar A, Gopinathan SP, Narasimhan K.L, Kabra D. Band gap tuning of CH3NH3Pb(Br1−xClx)3 hybrid perovskite for blue electroluminescence. ACS Appl Mater Interfaces. 2015;7:13119. https://doi.org/10.1021/acsami.5b02159
  • [21] Eperon GE, Stranks SD, Menelaou C, Johnston MB, Herz LM, Snaith HJ. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci. 2014;7:982–8. https://doi.org/10.1039/C3EE43822H
  • [22] Noh JH, Im SH, Heo JH, Mandal TN, Seok SI. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 2013;13:1764–9. https://doi.org/10.1021/nl400349b
  • [23] Hao F, Stoumpos CC, Chang RPH, Kanatzidis MG. Anomalous band gap behavior in mixed sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J Am Chem Soc. 2014;136:8094. https://doi.org/10.1021/ja5033259
  • [24] Ogomi Y, Morita A, Tsukamoto S, Satiro T, Fujiyama N, Shen Q, et al. CH3NH3SnxPb(1−−x)I3 perovskite solar cells covering up to 1060 nm. J Phys Chem Lett. 2014;5:1004–11. https://doi.org/10.1021/jz5002117
  • [25] Era M, Morimoto S, Tsutsui T, Saito S. Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4. Appl Phys Lett. 1994;65:676. https://doi.org/10.1063/1.112265
  • [26] Hong X, Ishihara T, Nurmikko AV. Photoconductivity and electroluminescence in lead iodide based natural quantum well structures. Solid State Commun. 1992;84:657. https://doi.org/10.1016/0038-1098(92)90210-Z
  • [27] Hattori T, Taira T, Era M, Tsutsui T, Saito S. Highly efficient electroluminescence from a heterostructure device combined with emissive layered-perovskite and an electron-transporting organic compound. Chem Phys Lett. 1996;254:103–8. https://doi.org/10.1016/0009-2614(96)00310-7
  • [28] Kondo T, Azuma T, Yuasa T, Ito R. Biexciton lasing in the layered perovskite-type material (C6H13NH3)2PbI4. Solid State Commun. 1998;105:253–5. https://doi.org/10.1016/S0038-1098(97)10085-0
  • [29] Wang J, Wang N, Jin Y, Si J, Tan ZK, Du H, et al. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Adv Mater. 2015;27(14):2311–6. https://doi.org/10.1002/adma.201405217
  • [30] Michael ML, Joël T, Tsutomu M, Takurou NM, Henry JS. Efficient hybrid solar cells based on Meso-Superstructured Organometal Halide Perovskites. Science. 2012;80. https://doi.org/10.1126/science.1228604
  • [31] Chen S, Roh K, Lee J, Chong WK, Lu Y, Mathews N. et al. A photonic crystal laser from solution based organo-lead iodide perovskite thin films. ACS Nano 2016;10;3959–67. https://doi.org/10.1021/acsnano.5b08153
  • [32] Sutherland BR, Sargent EH. Perovskite photonic sources. Nat Photonics. 2016;10:295–302. https://doi.org/10.1038/nphoton.2016.62
  • [33] Mitzi DB, Wang S, Field CA, Chess CA, Guloy AM. Conducting layered organic-inorganic halides containing <110>oriented perovskite sheets. Science. 1995;80:267(5203):1473–6. https://doi.org/10.1126/science.267.5203.1473
  • [34] Young HK et al. Multicolored organic/inorganic hybrid perovskite light emitting diodes. Adv Mater. 2015;27(7):1248–54. https://doi.org/10.1002/adma.201403751
  • [35] Wei T, Huanping Z, Liang L. Hybrid organic-inorganic perovskite photodetectors. Small. 2017;41:1702107. https://doi.org/10.1002/smll.201702107
  • [36] Dou L, Yang Y, You J, Hong Z, Chang WH, Li G, et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat Commun. 2014;5:5404. https://doi.org/10.1038/ncomms6404
  • [37] Zhuo S, Zhang J., Shi Y, Huang Y, Zhang B. Self-template-directed synthesis of porous perovskite nanowires at room temperature for high-performance visible-light photodetectors. Angew Chem Int Ed. 2015;54:5693. https://doi.org/10.1002/anie.201411956
  • [38] Maculan G, Sheikh AD, Abdelhady A, Saidaminov MI, Haque MA, Murali B, et al. CH3NH3PbCl3 single crystals: inverse temperature crystallization and visible-blind UV-photodetector. J Phys Chem Lett. 2015;6:3781–6. https://doi.org/10.1021/acs.jpclett.5b01666
  • [39] Deschler F, Price M, Pathak S, Klintberg LE, Jarausch DD, Higler R, et al.. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J Phys Chem Lett. 2014;5:1421. https://doi.org/10.1021/jz5005285
  • [40] Saif MHQ, Khan MN, Alqasem A, Hezam M, Aldwayyan AA. Restraining effect of film thickness on the behavior of amplified spontaneous emission from methylammonium lead iodide perovskite. IET Optoelectronics. 2018;13(1):2–6. https://doi.org/10.1049/iet-opt.2018.5035
  • [41] Zhu, H., et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater. 2015;14:636–42. https://doi.org/10.1038/nmat4271
  • [42] Qing Z, et al., Advances in small perovskite based lasers. Small Methods. 2017;1(9):1700163. https://doi.org/10.1002/smtd.201700163
  • [43] Sutherland BR, Hoogland S, Adachi MM, Wong CT, Sargent EH. Conformal organohalide perovskites enable lasing on spherical resonators. ACS Nano. 2014;8(10):10947–52. https://doi.org/10.1021/nn504856g
  • [44] Stranks SD, Wood SM, Wojciechowski K, Deschler F, Saliba M, Khandelwal H, et al. Enhanced amplified spontaneous emission in perovskites using a flexible cholesteric liquid crystal reflector. Nano Lett. 2015;15(8):4935–41. https://doi.org/10.1021/acs.nanolett.5b00678
  • [45] Zhang Q, Ha ST, Liu X, Sum TC, Xiong Q. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett. 2014;14:5995. https://doi.org/10.1021/nl503057g
  • [46] Dhanker R., et al. Random lasing in organo-lead halide perovskite microcrystal networks. Appl Phys Lett. 2014;105:151112. https://doi.org/10.1063/1.4898703
  • [47] Saliba M, Wood SM, Patel JB, Nayak PK, Huang J, Alexander-Webber JA, et al. Structured organic-inorganic perovskite toward a distributed feedback laser. Adv Mater. 2016;28:923–8. https://doi.org/10.1002/adma.201502608
  • [48] Liao Q, Hu K, Zhang HH, Wang XD, Yao JN, Fu HB. Perovskite microdisk microlasers self-assembled from solution. Adv Mater. 2015;27(24):3405. https://doi.org/10.1002/adma.201500449
  • [49] Chen J, Zhou S, Jin S, Li H, Zhai T, Gaál R, et al. Crystal organometal halide perovskites with promising optoelectronic applications. J Mater Chem C. 2016;4:11–27. https://doi.org/10.1039/C5TC03417E
  • [50] Audebert P, Clavier G, Alain-Rizzo V, Deleporte E, Zhang S, Lauret JSB, et al. Synthesis of new perovskite luminescent nanoparticles in the visible range. Chem Mater. 2009;21:210–14. https://doi.org/10.1021/cm8020462
  • [51] Protesescu L, Yakunin S, Bodnarchuk MI, Krieg F, Caputo R, Hendon CH, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015;15:3692–6. https://doi.org/10.1021/nl5048779
  • [52] Wang Y, Zhi M, Chang YQ, Zhang JP, Chan Y. Stable, ultralow threshold amplified spontaneous emission from CsPbBr3 nanoparticles exhibiting Trion gain. Nano Lett. 2018;18:4976–84. https://doi.org/10.1021/acs.nanolett.8b01817
  • [53] Yakunin S, Protesescu L, Krieg F, Bodnarchuk MI, Nedelcu G, Humer M, et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat Commun. 2015;6:8056. https://doi.org/10.1038/ncomms9056
  • [54] De Giorgi ML, Krieg F, Kovalenko MV, Anni M. Amplified spontaneous emission threshold reduction and operational stability improvement in CsPbBr3 nanocrystals films by hydrophobic functionalization of the substrate. Sci Rep. 2019;9:17964. https://doi.org/10.1038/s41598-019-54412-7
  • [55] Cho C, Palatnik A, Sudzius M, Grodofzig R, Nehm F, Leo K. Controlling and optimizing amplified spontaneous emission in perovskite. ACS Appl Mater Interfaces. 2020;12(31):35242–9. https://doi.org/10.1021/acsami.0c08870
  • [56] Leyden MR, Matsushim T, Qin Ch, Ruan S, Ye H, Adachi C. Amplified spontaneous emission in phenylethylammonium methylammonium lead iodide quasi-2D perovskites. Phys Chem Chem Phys. 2018;20:15030–6. https://doi.org/10.1039/C8CP02133C
  • [57] Aleksei OM, Stroganov BV, Günnemann C, Hammouda SB, Shurukhina AV, Lozhkin MS. et al. Amplified spontaneous emission and random lasing in MAPbBr3 halide perovskite single crystals. Adv Optical Mater. 2020;8(17):2000690. https://doi.org/10.1002/adom.202000690
  • [58] Zhang Q, Su R, Liu X, Xing J, Sum TC, Xiong Q. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv Funct Mater. 2016;26:6238–45. https://doi.org/10.1002/adfm.201601690
  • [59] Liu S, Sun W, Li J, Gu Z, Wangm K, Xiao S, et al. Random lasing actions in self-assembled perovskite nanoparticles. Opt Eng. 2016;55(5):057102. https://doi.org/10.1117/1.OE.55.5.057102
  • [60] Saif MHQ, Al-Asbahi BA, Ghaithan HH, Alsalhi MS, Aldwayyan AS. Optical and structural properties of CsPbBr3 perovskite quantum dots/PFO polymer composite thin films. J Colloid Interface Sci. 2020;563:426–34. https://doi.org/10.1016/j.jcis.2019.12.094
  • [61] Wang Y, Xiaoming Li, Song J, Xiao L, Zeng H, Sun H. All-inorganic colloidal perovskite quantum dots: A new class of lasing materials with favorable characteristics. Adv Mater. 2015;27:7101–8. https://doi.org/10.1002/adma.201503573
  • [62] Ning Z, Gong X, Comin R, Walters G, Fan F, Voznyy O, et al. Quantum-dot-in-perovskite solids. Nature. 2015;324(523):2015. https://doi.org/10.1038/nature14563
  • [63] Sun C, Zhang Y, Ruan C., et al. Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots. Adv Mater. 2016;28(45):10088–94. https://doi.org/10.1002/adma.201603081
  • [64] Wei Y, Xiao H, Xie Z., et al. Highly luminescent lead halide perovskite quantum dots in hierarchical CaF2 matrices with enhanced stability as phosphors for white light-emitting diodes. Adv Opt Mater. 2018;6(11):1701343. https://doi.org/10.1002/adom.201701343
  • [65] Yang G, Fan Q, Chen B, et al. Reprecipitation synthesis of luminescent CH3NH3PbBr3/NaNO3 nano-composites with enhanced stability. J Mater Chem C. 2016;4(48):11387–91. https://doi.org/10.1039/C6TC04069A
  • [66] Pang X, Zhang H, Xie L, et al. Precipitating CsPbBr3 quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays. J Mater Chem C. 2019;7(42):13139–48. https://doi.org/10.1039/C9TC04732H
  • [67] Pan J, Sarmah SP, Murali B, Dursun I, Peng W, Parida MR, et al. Air-stable surface-passivated perovskite quantum dots for ultra-robust, single- and two-photon-induced amplified spontaneous emission. J Phys Chem Lett. 2015;6:5027–33. https://doi.org/10.1021/acs.jpclett.5b02460
  • [68] Xiong Q, Huang S, Du J, Tang X, Zeng F, Liu Z, et al. Surface ligand engineering for CsPbBr3 quantum dots aiming at aggregation suppression and amplified spontaneous emission improvement. Adv Opt Mater. 2020;8:2000977. https://doi.org/10.1002/adom.202000977
  • [69] Moon H, Lee C, Lee W, et al. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications. Adv Mater. 2019;31(34):1804294. https://doi.org/10.1002/adma.201804294
  • [70] Yang J, Siempelkamp BD, Liu D., et al. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano. 2015;9(2):1955–63. https://doi.org/10.1021/nn506864k
  • [71] Christians JA, Miranda HPA, Kamat PV. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J Am Chem Soc 2015;137(4);1530–8. https://doi.org/10.1021/ja511132a
  • [72] Palazon F, Di SF, Lauciello S, et al. Evolution of CsPbBr3 nanocrystals upon post-synthesis annealing under an inert atmosphere. J Mater Chem C. 2016;4(39):9179–82. https://doi.org/10.1039/C6TC03342C
  • [73] Huang S, Li Z, Wang B, et al. Morphology evolution and degradation of CH3NH3PbI3 nanocrystals under blue light-emitting diode illumination. ACS Appl Mater Interfaces. 2017;9(8);7249–58. https://doi.org/10.1021/acsami.6b14423
  • [74] Gong Y, Shen J, Zhu Y, Yang X, Zhang L, Li C. Stretch induced photoluminescence enhanced perovskite quantum dot polymer composites. J Mater Chem C. 2020;8:1413–20. https://doi.org/10.1039/C9TC05966K
  • [75] Chen LC, Tien CH, Tseng ZL, Dong YS, Yang S. Influence of PMMA on all inorganic halide perovskite CsPbBr3 quantum dots combined with polymer matrix. Materials. 2019;12:985. https://doi.org/10.3390/ma12060985
  • [76] Khan MN, Al Dwayyan AS, Al Salhi MS. Study on characteristics of silicon nanocrystals within sol-gel host. J Exp Nanosci. 2012;7(2):120. https://doi.org/10.1080/17458080.2010.513016
  • [77] Khan MN, Al Dwayyan AS. Influence on structural and PL property of nanocrystals silicon doped sol gel matrix. J Optoelectron Adv Mater. 2012;14(5):448.
  • [78] Khan MN, Al Dwayyan AS, Al Hossain MS. Morphology and optical properties of a porous silicon-doped solgel host. Electron Mater Lett. 2013;9(5):697. https://doi.org/10.1080/17458080.2010.513016
  • [79] Khan MN, Aldalbahi A, Almohamedi A. Investigation of different colloidal porous silicon solutions and their composite solid matrix rods by optical techniques. J Electron Mater. 2018;47(7):3596–607. https://doi.org/10.1007/s11664-018-6204-y
  • [80] Khan MN, Aldalbahi A, Al Dwayyan AS. Composite rods based on nanoscale porous silicon in sol–gel silica and ormosil matrices for light-emitting applications. J Sol-Gel Sci Technol. 2017;82:551–62. https://doi.org/10.1007/s10971-017-4309-z
  • [81] Khan MN, Al Dwayyan AS, Aldalbahi A. Light emitting composite rods based on porous silicon in ormosils and polymer matrices for optical applications. Opt Laser Technol. 2017;91:203–11. https://doi.org/10.1016/j.optlastec.2016.12.035
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b39f8c45-aaec-4b9e-8123-0f5058ad9439
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.