PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical modelling of ozonation process with respect to bromate formation. Part I – Model development

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper focuses on the modelling of bromate formation. An axial dispersion model was proposed to integrate the non-ideal mixing, mass-transfer and a kinetic model that links ozone decomposition reactions from the Tomiyasu, Fukutomi and Gordon (TFG) ozone decay model with direct and indirect bromide oxidation reactions, oxidation of natural organic matter and its reactions with aqueous bromine. To elucidate the role of ammonia an additional set of reactions leading to bromamine formation, oxidation and disproportionation was incorporated in the kinetic model. Sensitivity analysis was conducted to obtain information on reliability of the reaction rate constants used and to simplify the model.
Słowa kluczowe
Rocznik
Strony
21--–38
Opis fizyczny
Bibliogr. 74 poz., tab.
Twórcy
  • AQUA SEEN Spółka z o.o., ul. Siennicka 29, 04-394 Warszawa, Poland
Bibliografia
  • 1. Acero J.L., von Gunten U., 2000. Influence of carbonate on the ozone/hydrogen peroxide based advanced oxidation process for drinking water treatment. Ozone Sci. Eng., 22, 305–328. DOI: 10.1080/01919510008547213.
  • 2. Amichai A., Czapski G., Treinin A., 1969. Flash photolysis of the oxybromine anions. Isr. J. Chem., 7, 351–359. DOI: 10.1002/ijch.196900046.
  • 3. Audenaert W.T.M., Callewaert M., Nopens I., Cromphout J., Vanhoucke R., Dumoulin A., Dejans P., Van Hulle S.W.H., 2010. Full-scale modelling of an ozone reactor for drinking water treatment. Chem. Eng. J., 157, 551–557. DOI: 10.1016/j.cej.2009.12.051.
  • 4. Beck G., 1969. Detection of charged intermediate pulse radiolysis by electrical conductivity measurements. Int. J. Rad. Phys. Chem., 1, 361–371. DOI: 10.1016/0020-7055(69)90033-3.
  • 5. Beltrán F.J., 2005. Ozone reaction kinetics for water and wastewater systems. Lewis Publishers, CRC Press LLC, Boca Raton. Beltrán F.J., Fernandez L.A., Álvarez P., Rodriguez F., 1998. Comparison of ozonation kinetic data from film and Danckwerts theories. Ozone Sci. Eng., 20, 403–420. DOI: 10.1080/10874506.01919512.1998.
  • 6. Berne F., Chansson G., Legube B., 2004. Effect of addition of ammonia on the bromate formation during ozonation. Ozone Sci. Eng., 26, 267–276. DOI: 10.1080/0191951049045 5728.
  • 7. Bielski B.H.J., Cabelli D.E., Arudi R.L., Ross A.B., 1985. Reactivity of HO2/O2 radicals in aqueous solution. J. Phys. Chem. Ref. Data, 14, 1041–1100. DOI: 10.1063/1.555739.
  • 8. Biń A.K., Roustan M., 2000. Mass transfer in ozone reactors. International Specialised Symposium IOA: Fundamental and Engineering Concepts for Ozone Reactor Design. Toulouse, France, 1–3 March 2000, 99–131.
  • 9. Bühler R.E., Staehelin J., Hoigné J., 1984. Ozone decomposition in water studied by pulse radiolysis. 1. Perhydroxyl (HO2) /hyperoxide (O− 2 ) and HO3/O− 3 as intermediates. J. Phys. Chem., 88, 2560–2564. DOI: 10.1021/ j150656a026.
  • 10. Buxton G.V., Daiton F.S., 1968. The relationship of aqueous solutions of oxybromine compounds: the spectra and reactions of BrO and BrO2 . Proc. R. Soc. London, Ser. A, 304, 427–439. DOI: 10.1098/rspa.1968.0095.
  • 11. Buxton G.V., Greenstock C.L., Helman W.P., Ross A.B., 1988. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals ( OH/O– ) in aqueous solution. J. Phys. Chem. Ref. Data, 17, 513–886. DOI: 10.1063/1.555805.
  • 12. Chelkowska K., Grasso D., Fábián I., Gordon G., 1992. Numerical simulation of aqueous ozone decomposition. Ozone Sci. Eng., 14, 33–49. DOI: 10.1080/01919519208552316.
  • 13. Christensen H., Schested K., Corfitzen H., 1982. Reactions of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperatures. J. Phys. Chem., 86, 1588–1590. DOI: 10.1021/j00206a023.
  • 14. Council Directive 98/83/EC of 3 November 1998 on quality of water intended for human consumption. Official Journal of the European Communities, L330/32–L330/54.
  • 15. Cromer J.L., Inman G.W., Johson J.D., 1978. Dibromamine decomposition kinetics. Chemistry of wastewater technology. Ann Arbor Science Publishers, Michigan, 213–225.
  • 16. El-Din M.G., Smith D.W., 2001. Designing ozone bubble columns: A spreadsheet approach to axial dispersion model. Ozone Sci. Eng., 23, 369–384. DOI: 10.1080/01919510108962020.
  • 17. Fischbacher A., Löppenberg K., von Sonntag C., Schmidt T.C., 2015. A new reactive pathway for bromite to bromate in the ozonation of bromide. Environ. Sci. Technol., 49, 11714–11720. DOI: 10.1021/acs.est.5b02634.
  • 18. Galal-Gorchev H., Morris J.C., 1965. Formation and stability of bromamide, bromimide, and nitrogen tribromide in aqueous solution. Inorg. Chem., 4, 899–905. DOI: 10. ic50028a029.
  • 19. Glaze W.H., Kang J.W., 1988. Advanced oxidation processes for treating groundwater contaminated with TCE and PCE: laboratory studies. J. Am. Water Works Assn., 80, 57–63. DOI: 10.1002/j.1551-8833.1988.tb03038.x
  • 20. Gordon G., 1995. The chemical aspects of bromate control in ozonated drinking water containing bromide ion. Water Supply, 13, 35–43.
  • 21. Haag W.R., Hoigné J., Bader H., 1982. Ozonation of bromide-containing drinking waters: formation kinetics of secondary bromine compounds. Vom Wasser, 59, 237–251.
  • 22. Haag W.R., Hoigné J., 1983. Ozonation of bromide-containing waters: Kinetics of formation of hypobromous acid and bromate. Environ. Sci. Technol., 17, 261–267. DOI: 10.1021/es00111a004.
  • 23. Haag W.R., Hoigné J., Bader H., 1984. Improved ammonia oxidation by ozone in the presence of bromide ion during water treatment. Water Res., 18, 1125–1128. DOI: 10.1016/0043-1354(84)90227-6.
  • 24. Hassan K.Z.A., Bower K.C., Miller C.M., 2003. Numerical simulation of bromate formation during ozonation of bromide. J. Environ. Eng., 129, 991–998. DOI: 10.1061/(ASCE)0733-9372(2003)129:11(991).
  • 25. Heeb M.B., Criquet J., Zimmermann-Steffens S.G., von Gunten U., 2014. Oxidative treatment of bromide-containing waters: Formation of bromine and its reactions with inorganic and organic compounds – A critical review. Water Res., 48, 15–42. DOI: 10.1016/j.watres.2013.08.030.
  • 26. Hofmann R., Andrews R.C., 2001. Ammoniacal bromamines: a review of their influence on bromate formation during ozonation. Water Res., 35, 599–604. DOI: 10.1016/S0043-1354(00)00319-5.
  • 27. Hoigné J., 1998. Chemistry of aqueous ozone and transformation of pollutants by ozonation and advanced oxidation processes. Handbook of Environmental Chemistry, 5, Part C, Quality and Treatment of Drinking Water II. J. Hrubec, Berlin, 83–141. Hoigné J., Bader H., Haag W.R., Staehelin J., 1985. Rate constants of reactions of ozone with organic and inorganic compounds in water–III. Water Res., 19, 993–1004. DOI: 10.1016/043-1354(85)90368-9.
  • 28. Inman G.W., Johnson J. D., 1984. Kinetics of monobromamine disproportionation – dibromamine formation in aqueous ammonia solutions. Environ. Sci. Technol., 18, 219–224. DOI: 10.1021/es00122a002.
  • 29. Johnson P.N., Davis R.A., 1996. Diffusivity of ozone in water. J. Chem. Eng. Data, 41, 1485–1487. DOI: 10.1021/ je9602125.
  • 30. Johnson J.D., Overby R., 1971. Bromine and bromamine disinfection chemistry. J. Sanitary Energy Div., 97, 617–628.
  • 31. Kim J-H., Elovitz M.S., von Gunten U., Shukairy H.M., 2007. Modeling Cryptosporidium parvum oocyst inactivation and bromate in a flow-through ozone contactor treating natural waters. Water Res. 41, 467–475. DOI: 10.1016/ j.watres.2006.10.013.
  • 32. Kläning U.K., Wolff T., 1985. Laser flash photolysis of HClO, ClO− , HBrO, and BrO− in aqueous solution. Reactions of Cl− and Br− atoms. Berichte der Bunsengesellschaft für physikalische Chemie, 89, 243–245. DOI: 10.1002/ bbpc.19850890309.
  • 33. Koppenol W.H., Butler J., Leeuwan J.W.L.V., 1978. The Haber-Weiss cycle. Photochem., Photobiol., 28, 655–660. DOI: 10.1111/j.1751?1097.1978.tb06989.x.
  • 34. Kuosa M., Kallas J., Haario H., 2005. Axial dispersion modelfor estimation of ozone self-decomposition. Ozone Sci. Eng., 27, 409–417. DOI: 10.1080/019195105002510.
  • 35. La Pointe T.F., Inman G., Johnson D.J., 1975. Kinetics of tribromamine decomposition. Disinfection: water and wastewater. Ann Arbor Science Publishers, Michigan, 301–338.
  • 36. Lei H., Mariñas B.J., Minear R.A.,2004. Bromamine decomposition kinetics in aqueous solutions. Environ. Sci. Technol., 38, 2111–2119. DOI: 10.1021/es034726h.
  • 37. Levenspiel O., 1999. Chemical reaction engineering. 3r d edition, John Wiley & Sons, New York.
  • 38. Lewis W.K., Whiteman W.C., 1924. Principles of gas adsorption. Ind. Eng. Chem., 16, 1215–1220. DOI: 10.1021/ ie50180a002.
  • 39. Liu Q., Schurter L.M., Muller C.F., Aloisio S., Francisco J.S., Margerum D.W., 2001. Kinetics and mechanism of aqueous ozone reactions with bromide, sulfite, hydrogen sulfite, iodide, and nitrite ions. Inorg. Chem., 40, 4436–4442. DOI: 10.1021/ic000919j.
  • 40. Lovato E.M., Martin C.A., Cassano A.E., 2009. A reaction kinetic model for ozone decomposition in aqueous media valid for neutral and acidic pH. Chem. Eng. J., 146, 486–497. DOI: 10.1016/j.cej.2008.11.001.
  • 41. Mandel P., Maurel M., Lemoine C., Roche P., Wolbert D., 2012. How bromate and ozone concentrations can be modeled at full-scale based on lab-scale. Ozone Sci. Eng., 34, 280–292. DOI: 10.1080/019195512.692636.
  • 42. Maruthamuthu P., Neta P., 1978. Phosphate radicals. Spectra, acid-base equilibria and reactions with inorganic compounds. J. Phys. Chem., 82, 710–713. DOI: 10.1021/j100495a019.
  • 43. Mizumo T., Tsuno H., Yamada H., 2007. A simple model to predict formation of bromate ion and hypobromous acid/hypobromite ion through hydroxyl radical pathway during ozonation. Ozone Sci. Eng., 29, 3–11. DOI: 10.1080/01919510601093806.
  • 44. Nemes A., Fabian I., Gordon G., 2000. Experimental aspects of mechanistic studies on aqueous ozone decomposition in alkaline solution. Ozone Sci. Eng., 22, 287–304. DOI: 10.1080/ 0191950008547212.
  • 45. Olsińska U., 2019. Numerical modelling of ozonation process with respect to bromate formation. Part II – Model validation. Chem. Process Eng., 40, 39–47. DOI: 10.24425/cpe.2018.124995.
  • 46. Perkowski J., Zarzycki R. (Ed.), 2005. Występowanie i właściwości ozonu. Polska Akademia Nauk. Łódź.
  • 47. Pinkernell U., von Gunten U., 2001. Bromate minimization during ozonation: mechanistic considerations. Environ. Sci. Technol., 35, 2525–2531. DOI: 10.1021/es001502f.
  • 48. Roustan M., Duguet J.P., Lainé J.M., Do-Quang Z., Mallevialle J., 1996. Bromate ion formation: Impact of ozone contactor hydraulics and operating conditions. Ozone Sci. Eng., 18, 87?97. DOI: 10.1080/019195196088547343.
  • 49. Schested K., Holcman J., Bjergbakke E., Hart E. J., 1984a. A pulse radiolytic study of the reaction OH + O3 in aqueous medium. J. Phys. Chem., 88, 4144–4147. DOI: 10.1021/j150662a058.
  • 50. Schested K., Holcman J., Bjergbakke E., Hart E.J., 1984b. Formation of ozone in the reaction of reaction OH with O – 3 and the decay of the ozonide ion radical at pH 10–13. J. Phys. Chem., 88, 269–273. DOI: 10.1021/ j150646a021.
  • 51. Schested K., Rasmussen O.L., Fricke H., 1968. Rate constant of OH with HO2, O – 2 and H2O2 from hydroxide peroxide formationin pulse irradiated oxygenated water. J. Phys. Chem., 72, 626–631. DOI: 10.1021/j100848a040.
  • 52. Schwarc H.A., Bielski B.H.J., 1986. Reaction of HO2 and O – 2 with iodine and bromine and the I− 2 and I atom reduction potentials. J. Phys. Chem., 90, 1445–1448. DOI: 10.1021/j100398a045.
  • 53. Siddiqui M., Amy G., Rice R. G., 1995. Bromate ion formation: a critical review. J. Am. Water Works Assn., 87, 58–70. DOI: 10.1002/j.1551-8833.1995.tb06435.x.
  • 54. Sidgwick N. V., 1952. The chemical elements and their compounds. Oxford University Press, Oxford.
  • 55. Song S.R., Donohoe C., Minear R., Westerhoff P., Amy G., 1996. Empirical modelling of bromide-containing waters. Water Res., 30, 1161–1168. DOI: 10.1016/0043-1354(95)00302-9.
  • 56. Song R., Westerhoff P., Minear P., Amy G., 1997. Bromate minimization during ozonation. J. Am. Water Works Assn., 89, 69–78.
  • 57. Sugam R., Helz G. R., 1981. Chlorine speciation in seawater: a metastable equilibrium model for ClI and BrI species. Chemosphere, 10, 41–57. DOI: 10.1016/0045-6535(81)90158-2.
  • 58. Sutton H.C., Adams G. E., Boag J. W., Michael B. D., 1965. Pulse radiolysis. Academic Press, London, 61–81.
  • 59. Theil H., 1961. Economic forecasts and policy. 2nd edition, North Holland Publishing Co., Amsterdam.
  • 60. Tomiyasu H., Fukutomi H., Gordon G., 1985. Kinetics and mechanism of ozone decomposition in basic aqueous solution. Inorg. Chem., 24, 2962–2966. DOI: 10.1021/ic00213a018.
  • 61. United States Environmental Protection Agency, 2009. National primary drinking water regulations: Disinfectants and disinfection by-products. Federal Register EPA 816-F-09-004. von Gunten U., 2003. Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res., 37, 1469–1487. DOI: 10.1016/S0043-1354(02)00458-x.
  • 62. von Gunten U., 2007. The basics of oxidants in water treatment. Part B: ozone reactions. Water Sci. Techol., 55, 25–29. DOI: 10.2166/wst.2007.382.
  • 63. von Gunten U., Hoigné J., 1994. Bromate formation during ozonation of bromide-containing waters: interaction of ozone and hydroxyl radical reactions. Environ. Sci. Technol., 28, 1234–1242. DOI: 10.1021/es00056a009.
  • 64. von Gunten U., Oliveras Y., 1998. Advanced oxidation of bromide–containing waters: bromate formation mechanism. Environ. Sci. Technol., 32, 63–70. DOI: 10.10.1021/es 970477j.
  • 65. von Gunten U., Oliveras Y., 1997. Kinetics of the reactions between hydrogen peroxide and hypobromous acid: implication on water treatment and natural systems. Water Res., 31, 900–906. DOI: 10.1016/S0043-1354(96).
  • 66. von Sonntag C., von Gunten U., 2012.Chemistry of ozone in water and wastewater treatment – from basic principles to applications. IWA Publishing, London.
  • 67. Wajon J., Morris J., 1982. Rates of formation of N-bromoamines in aqueous solution. Inorg. Chem., 21, 4258–4263. DOI: 10.1021/ic00142a030.
  • 68. Weast R.C., Selby S.M., 1971. Handbook of chemistry and physics. 52nd edition, Chemical Rubber Co., 1971–1972.
  • 69. Weinstein J., Bielski B.H. J., 1979. Kinetics of the interaction of HO2 and O2 – radicals with hydrogen peroxide. The Haber-Weiss reaction. J. Am. Chem. Soc., 101, 58–62. DOI: 10.1021/ja00495a010.
  • 70. Westerhoff P., Song R., Minear P., 1998. Numerical kinetic models for bromide oxidation to bromine and bromate. Water Res., 32, 1687–1699. DOI: 10.1016/S0043-1354(97)00287-x.
  • 71. Westerhoff P., Song R., Amy G., Minear P., 1997. Applications of ozone decomposition models. Ozone Sci. Eng., 19, 55–73. DOI: 10.1080/01919519708547318.
  • 72. WHO Guidelines, 1993. Guidelines for drinking-water quality, Vol. 1, Recommendations. 1st edition, World Health Organization, Geneva.
  • 73. Zehavi D., Rabani J., 1972. The oxidation of aqueous bromide ions by hydroxyl radicals. A pulse radiolytic investigation. J. Phys. Chem., 76, 312–319. DOI: 10.1021/j100647a006.
  • 74. Zhou H., Smith D. W., Stanley S. J., 1994. Modelling of dissolved ozone concentration profiles in bubble columns. J. Environ. Eng., 120, 821–840. DOI: 10.1061/(ASCE)0733-9372(1994)120:4(821).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b396e87b-9466-4d09-8e51-bfa151125760
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.