Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The problem of estimation of unmeasured state variables and unknown reaction kinetic functions for selected biochemical processes modelled as a continuous stirred tank reactor is addressed in this paper. In particular, a new hierarchical (sequential) state observer is derived to generate stable and robust estimates of the state variables and kinetic functions. The developed hierarchical observer uses an adjusted asymptotic observer and an adopted super-twisting sliding mode observer. The stability of the proposed hierarchical observer is investigated under uncertainty in the system dynamics. The stability analysis of the estimation error dynamics is carried out based on the methodology associated with linear parameter-varying systems and sliding mode regimes. The developed hierarchical observer is implemented in the Matlab/Simulink environment and its performance is validated via simulation. The obtained satisfactory estimation results demonstrate high effectiveness of the devised hierarchical observer.
Rocznik
Tom
Strony
45--64
Opis fizyczny
Bibliogr. 61 poz., rys., tab., wykr.
Twórcy
autor
- Department of Intelligent Control and Decision Support Systems, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
- Department of Intelligent Control and Decision Support Systems, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
- Digital Technologies Center, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
- [1] Alcaraz-González, V., Harmand, J., Rapaport, A., Steyer, J.P., González-Alvarez, V. and Pelayo Ortiz, C. (2005). Application of a robust interval observer to an anaerobic digestion process, Developments in Chemical Engineering & Mineral Processing 13(3-4): 267-278, DOI: 10.1002/apj.5500130308.
- [2] Bárzaga-Martell, L., Duarte-Mermoud, M.A., Ibáñez Espinel, F., Gamboa-Labbé, B., Saa, P.A. and Pérez-Correa, J.R. (2021). A robust hybrid observer for monitoring high-cell density cultures exhibiting overflow metabolism, Journal of Process Control 104: 112-125, DOI: 10.1016/j.jprocont.2021.06.006.
- [3] Bastin, G. and Dochain, D. (1990). On-Line Estimation and Adaptive Control of Bioreactors, Elsevier, Amsterdam.
- [4] Bogaerts, P. (1999). A hybrid asymptotic Kalman observer for bioprocesses, Bioprocess Engineering 20: 249-255, DOI: 10.1007/s004490050587.
- [5] Bogaerts, P. and Coutinho, D. (2014). Robust nonlinear state estimation of bioreactors based on H∞ hybrid observers, Computers & Chemical Engineering 60: 315-328, DOI: 10.1016/j.compchemeng.2013.09.013.
- [6] Bogaerts, P. and Hanus, R. (2001). On-line state estimation of bioprocesses with full horizon observers, Mathematics and Computers in Simulation 56(4-5): 425-441.
- [7] Bogaerts, P. and Vande Wouwer, A. (2003). Software sensors for bioprocesses, ISA Transactions 42(4): 547-558, DOI: 10.1016/S0019-0578(07)60005-6.
- [8] Boyd, S., El Ghaoui, L., Feron, E. and Venkataramanan, B. (1994). Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia.
- [9] Coutinho, D., Vargas, A., Feudjio, C., Benavides, M. and Vande Wouwer, A. (2019). A robust approach to the design of super-twisting observer - Application to monitoring microalgae cultures in photo-bioreactors, Computers & Chemical Engineering 121: 46-56, DOI: 10.1016/j.compchemeng.2018.07.006.
- [10] Czyżniewski, M. and Łangowski, R. (2022a). An observability and detectability analysis for non-linear uncertain CSTR model of biochemical processes, Scientific Reports 12: 22327, DOI: 10.1038/s41598-022-26656-3.
- [11] Czyżniewski, M. and Łangowski, R. (2022b). A robust sliding mode observer for non-linear uncertain biochemical systems, ISA Transactions 123: 25-45, DOI: 10.1016/j.isatra.2021.05.040.
- [12] Czyżniewski, M., Łangowski, R. and Piotrowski, R. (2023). Respiration rate estimation using non-linear observers in application to wastewater treatment plant, Journal of Process Control 124: 70-82, DOI: 10.1016/j.jprocont.2023.02.00.
- [13] De Battista, H., Picó, J., Garelli, F. and Navarro, J.L. (2012). Reaction rate reconstruction from biomass concentration measurement in bioreactors using modified second-order sliding mode algorithms, Bioprocess and Biosystems Engineering 35: 1615-1625, DOI: 10.1007/s00449-012-0752-y.
- [14] De Battista, H., Picó, J., Garelli, F. and Vignoni, A. (2011). Specific growth rate estimation in (fed-)batch bioreactors using second-order sliding observers, Journal of Process Control 21(7): 1049-1055, DOI: 10.1016/j.jprocont.2011.05.008.
- [15] Dewasme, L., Goffaux, G., Hantson, A.-L. and Vande Wouwer, A. (2013). Experimental validation of an extended Kalman filter estimating acetate concentration in E. coli cultures, Journal of Process Control 23(2): 148-157, DOI: 10.1016/j.jprocont.2012.09.004.
- [16] Dewasme, L., Sbarciog, M., Rocha-Cózatl, E., Haugen, R. and Vande Wouwer, A. (2019). State and unknown input estimation of an anaerobic digestion reactor with experimental validation, Control Engineering Practice 85: 280-289, DOI: 10.1016/j.conengprac.2019.02.003.
- [17] Dewasme, L. and Vande Wouwer, A. (2020). Experimental validation of a full-horizon interval observer applied to hybridoma cell cultures, International Journal of Control 93(11): 2719-2728, DOI: 10.1080/00207179.2019.1608372.
- [18] Dochain, D. and Perrier, M. (2002). A state observer for (bio)processes with uncertain kinetics, Proceedings of the 2002 American Control Conference, Anchorage, USA, pp. 2873-2878, DOI: 10.1109/ACC.2002.1025225.
- [19] Dochain, D. and Vanrolleghem, P.A. (2001). Dynamical Modelling and Estimation in Wastewater Treatment Processes, IWA Publishing, London.
- [20] Elsheikh, M., Hille, R., Tatulea-Codrean, A. and Krämer, S. (2021). A comparative review of multi-rate moving horizon estimation schemes for bioprocess applications, Computers & Chemical Engineering 146: 107219, DOI: 10.1016/j.compchemeng.2020.107219.
- [21] Farza, M., Busawon, K. and Hammouri, H. (1998). Simple nonlinear observers for on-line estimation of kinetic rates in bioreactors, Automatica 34(3): 301-318, DOI: 10.1016/S0005-1098(97)00166-0.
- [22] Fridman, L., Moreno, J.A. and Iriarte, R. (2011). Sliding Modes After the First Decade of the 21st Century, Springer, Berlin.
- [23] Garcia-Ochoa, F. and Gomez, E. (2009). Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview, Biotechnology Advances 27(2): 153-176, DOI: 10.1016/j.biotechadv.2008.10.006.
- [24] Ha Hoang, N., Couenne, F., Le Gorrec, Y., Chen, C.L. and Ydstie, B.E. (2013). Passivity-based nonlinear control of CSTR via asymptotic observers, Annual Reviews in Control 37(2): 278-288, DOI: 10.1016/j.arcontrol.2013.09.007.
- [25] Hadj-Sadok, M.Z. and Gouzé, J.-L. (2005). Estimation of uncertain models of activated sludge processes with interval observers, Journal of Process Control 11(3): 299-310, DOI: 10.1016/S0959-1524(99)00074-8.
- [26] Henze, M., Gujer, W., Mino, T. and Van Loosdrecht, M. (2000). Activated Sludge Models ASM1, ASM2, ASM2d and ASM3, IWA Publishing, London.
- [27] Hulhoven, X., Vande Wouwer, A. and Bogaerts, P. (2006). Hybrid extended Luenberger-asymptotic observer for bioprocess state estimation, Chemical Engineering Science 61(21): 7151-7160.
- [28] Hulhoven, X., Vande Wouwer, A. and Bogaerts, P. (2008). State observer scheme for joint kinetic parameter and state estimation, Chemical Engineering Science 63(19): 4810-4819.
- [29] Ilchmann, A., Owens, D.H. and Prätzel-Wolters, D. (1987). Sufficient conditions for stability of linear time-varying systems, Systems & Control Letters 9(2): 157-163, DOI: 10.1016/0167-6911(87)90022-3.
- [30] Jenkins, B.M., Annaswamy, A.M., Lavretsky, E. and Gibson, T.E. (2018). Convergence properties of adaptive systems and the definition of exponential stability, SIAM Journal on Control and Optimization 56(4): 2463-2484, DOI: 10.1137/15M1047805.
- [31] Junosza-Szaniawski, K., Nogalski, D. and Rzążewski, P. (2022). Exact and approximation algorithms for sensor placement against DDoS attacks, International Journal of Applied Mathematics and Computer Science 32(1): 35-49, DOI: 10.34768/amcs-2022-0004.
- [32] Khalil, H.K. (2002). Nonlinear Systems, 3rd Edition, Prentice-Hall, Inc., Upper Saddle River.
- [33] Lafont, F., Pessel, N., Balmat, J.-F. and Gauthier, J.-P. (2014). Unknown-input observability with an application to prognostics for waste water treatment plants, European Journal of Control 20(2): 95-103, DOI: 10.1016/j.ejcon.2014.01.002.
- [34] Łangowski, R. and Brdys, M.A. (2017). An interval estimator for chlorine monitoring in drinking water distribution systems under uncertain system dynamics, inputs and chlorine concentration measurement errors, International Journal of Applied Mathematics and Computer Science 27(2): 309-322, DOI: 10.1515/amcs-2017-0022.
- [35] Łangowski, R. and Brdys,M.A. (2018). An optimised placement of the hard quality sensors for a robust monitoring of the chlorine concentration in drinking water distribution systems, Journal of Process Control 68: 52-63, DOI: 10.1016/j.jprocont.2018.04.007.
- [36] Lemesle, V. and Gouzé, J.-L. (2005). Hybrid bounded error observers for uncertain bioreactor models, Bioprocess and Biosystems Engineering 27(5): 311-318.
- [37] Lindberg, C.F. (1997). Control and Estimation Strategies Applied to the Activated Sludge Process, PhD thesis, Uppsala University, Uppsala.
- [38] López-Caamal, F. and Moreno, J.A. (2016). Unmeasured concentrations and reaction rates estimation in CSTRs, IFAC-PapersOnLine 49(7): 224-229, DOI: 10.1016/j.ifacol.2016.07.262.
- [39] López-Estrada, F.-R., Ponsart, J.-C., Theilliol, D., Astorga-Zaragoza, C.-M. and Camas-Anzueto, J.-L. (2015). Robust sensor fault estimation for descriptor-LPV systems with unmeasurable gain scheduling functions: Application to an anaerobic bioreactor, International Journal of Applied Mathematics and Computer Science 25(2): 233-244, DOI: 10.1515/amcs-2015-0018.
- [40] Moreno, J.A. (2012). Lyapunov approach for analysis and design of second order sliding mode algorithms, in L. Fridman et al. (Eds), Sliding Modes After the First Decade of the 21st Century: State of the Art, Springer, Berlin/Heidelberg, pp. 113-149, DOI: 10.1007/978-3-642-22164-4_4.
- [41] Moreno, J.A. and Dochain, D. (2008). Global observability and detectability analysis of uncertain reaction systems and observer design, International Journal of Control 81(1): 1062-1070, DOI: 10.1080/00207170701636534.
- [42] Moreno, J.A. and Mendoza, I. (2014). Application of super-twisting-like observers for bioprocesses, 13th International Workshop on Variable Structure Systems (VSS), Nantes, France, pp. 1-6, DOI: 10.1109/VSS.2014.6881102.
- [43] Moreno, J.A. and Osorio, M. (2012). Strict Lyapunov functions for the super-twisting algorithm, IEEE Transactions on Automatic Control 57(4): 1035-1040, DOI: 10.1109/TAC.2012.2186179.
- [44] Moreno, J.A., Rocha-Cózatl, E. and Vande Wouwer, A. (2012). Observability/detectability analysis for nonlinear systems with unknown inputs - Application to biochemical processes, Preprints of the 2012 20th Mediterranean Conference on Control & Automation (MED), Barcelona, Spain, pp. 2445-2450, DOI: 10.1109/MED.2012.6265630.
- [45] Moshksar, E. and Guay, M. (2014). A geometric approach for adaptive estimation of unknown growth kinetics in bioreactors, Journal of Process Control 24(10): 1496-1503, DOI: 10.1016/j.jprocont.2014.06.017.
- [46] Nuñez, S., De Battista, H., Garelli, F., Vignoni, A. and Picó, J. (2013). Second-order sliding mode observer for multiple kinetic rates estimation in bioprocesses, Control Engineering Practice 21(9): 1259-1265, DOI: 10.1016/j.conengprac.2013.03.003.
- [47] Oubabas, H., Djennoune, S. and Bettayeb, M. (2018). Interval sliding mode observer design for linear and nonlinear systems, Journal of Process Control 61: 12-22, DOI: 10.1016/j.jprocont.2017.10.004.
- [48] Piotrowski, R., Sawicki, H. and Żuk, K. (2021). Novel hierarchical nonlinear control algorithm to improve dissolved oxygen control in biological WWTP, Journal of Process Control 105: 78-87, DOI: 10.1016/j.jprocont.2021.07.009.
- [49] Reis de Souza, A., Gouzé, J.-L., Efimov, D. and Polyakov, A. (2020). Robust adaptive estimation in the competitive chemostat, Computers & Chemical Engineering 142: 107030, DOI: 10.1016/j.compchemeng.2020.107030.
- [50] Rodríguez, A., Quiroz, G., Femat, R., Méndez-Acosta, H.O. and de León, J. (2015). An adaptive observer for operation monitoring of anaerobic digestion wastewater treatment, Chemical Engineering Journal 269: 186-193, DOI: 10.1016/j.cej.2015.01.038.
- [51] Rueda-Escobedo, J.G., Sbarciog, M., Moreno, J.A., Van Impe, J. and Vande Wouwer, A. (2022). Robust state and input estimation with enhanced convergence rate for monitoring anaerobic digestion, Journal of Process Control 117: 169-180, DOI: 10.1016/j.jprocont.2022.07.014.
- [52] Ríos, H., Efimov, D. and Perruquetti, W. (2018). An adaptive sliding-mode observer for a class of uncertain nonlinear systems, International Journal of Adaptive Control and Signal Processing 32(3): 511-527.
- [53] Shilov, G. and Chilov, G. (1996). Elementary Functional Analysis, Courier Corporation, Moscow.
- [54] Srinivasarengan, K., Ragot, J., Aubrun, C. and Maquin, D. (2018). An adaptive observer design approach for a class of discrete-time nonlinear systems, International Journal of Applied Mathematics and Computer Science 28(1): 55-67, DOI: 10.2478/amcs-2018-0004.
- [55] Sun, X., Jin, L. and Xiong, M. (2008). Extended Kalman filter for estimation of parameters in nonlinear state-space models of biochemical networks, PLoS ONE 3(11): e3758, DOI: 10.1371/journal.pone.0003758.
- [56] Taylor, J.A., Rapaport, A. and Dochain, D. (2022). A sequential convex moving horizon estimator for bioprocesses, Journal of Process Control 116: 19-24, DOI: 10.1016/j.jprocont.2022.05.012.
- [57] Torfs, E., Nicolaï, N., Daneshgar, S., Copp, J.B., Haimi, H., Ikumi, D., Johnson, B., Plosz, B.B., Snowling, S., Townley, L.R., Valverde-Pérez, B., Vanrolleghem, P.A., Vezzaro, L. and Nopens, I. (2022). The transition of WRRF models to digital twin applications, Water Science and Technology 85(10): 2840-2853, DOI: 10.2166/wst.2022.107.
- [58] Tuveri, A., Holck, H.E., Nakama, C.S.M., Matias, J., Jäschke, J., Imsland, L. and Bar, N. (2022). Bioprocess monitoring: A moving horizon estimation experimental application, IFAC-PapersOnLine 55(7): 222-227, DOI: 10.1016/j.ifacol.2022.07.448.
- [59] Ujazdowski, T., Zubowicz, T. and Piotrowski, R. (2023). A comprehensive approach to SBR modelling for monitoring and control system design, Journal of Water Process Engineering 53: 103774, DOI: 10.1016/j.isatra.2021.05.040.
- [60] Yin, X. and Liu, J. (2017). Distributed moving horizon state estimation of two-time-scale nonlinear systems, Automatica 79: 152-161, DOI: 10.1016/j.automatica.2017.01.023.
- [61] Zhou, B. (2016). On asymptotic stability of linear time-varying systems, Automatica 68: 266-276, DOI: 10.1016/j.automatica.2015.12.030.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b39633be-c245-4ae6-8211-4585b6536bf9