PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On thermo-mechanical bending response of porous functionally graded sandwich plates via a simple integral plate model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work investigates the thermo-mechanical bending response of porous functionally graded sandwich plates which can be considered for military and civil use. Integral four-unknown shear deformation theory is proposed to present the kinematic of the structure. The differential equilibrium equations are determined via the principle of virtual work and solved with Navier’s procedure. The influence of porosity parameters is examined to explain the structural integrity of such structures that can be utilized in military and civil industries. In addition, a detailed parametric investigation is performed to highlight the impact of the “volume fraction variation”, “geometrical ratios” and “thermal load” on thermo-mechanical bending response of the porous functionally graded sandwich plates.
Rocznik
Strony
art. no. e186, 2022
Opis fizyczny
Bibliogr. 55 poz., rys., tab., wykr.
Twórcy
  • GRC Department, Jeddah Community College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
  • Department of Nuclear Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
autor
  • Statistics Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
  • Department of Industrial Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
  • YFL (Yonsei Frontier Lab), Yonsei University, Seoul, Korea
  • Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Eastern Province, Saudi Arabia
  • Material and Hydrology Laboratory, Civil Engineering Department, Faculty of Technology, University of Sidi Bel Abbes, Sidi Bel Abbes, Algeria
  • Material and Hydrology Laboratory, Civil Engineering Department, Faculty of Technology, University of Sidi Bel Abbes, Sidi Bel Abbes, Algeria
  • Civil Engineering Department, Faculty of Technology, University of Tissemsilt, Tissemsilt, Algeria
Bibliografia
  • [1] Vinson JR. Sandwich structures. Appl Mech Rev. 2001;54(3):201–14. https://doi.org/10.1115/1.3097295.
  • [2] Vinson JR. Sandwich structures: past, present, and future. In: Thomsen O, Bozhevolnaya E, Lyckegaard A, editors. Sandwich structures 7: advancing with sandwich structures and materials. Dordrecht: Springer; 2005. p. 3–12. https:// doi. org/ 10.1007/1-4020-3848-8_1.
  • [3] Lindström A, Hallström S. Energy absorption of SMC/balsa sandwich panels with geometrical triggering features. Compos Struct. 2010;92(11):2676–84. https://doi.org/10.1016/j.compstruct.2010.03.018.
  • [4] Dean J, Fallah AS, Brown PM, Louca LA, Clyne TW. Energy absorption during projectile perforation of lightweight sandwich panels with metallic fibre cores. Compos Struct. 2011;93(3):1089–95. https://doi.org/10.1016/j.compstruct.2010.09.019.
  • [5] Katariya PV, Panda SK, Mahapatra TR. Prediction of nonlinear eigenfrequency of laminated curved sandwich structure using higher-order equivalent single-layer theory. J Sandwich Struct Mater. 2017;21(8):2846–69. https://doi.org/10.1177/1099636217728420.
  • [6] Katariya PV, Panda SK. Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect. Steel Composite Structures. 2020;34(2):279–88. https://doi.org/10.12989/scs.2020.34.2.279.
  • [7] Akavci SS. Mechanical behavior of functionally graded sandwich plates on elastic foundation. Compos Part B. 2016;96:136–52. https://doi.org/10.1016/j.compositesb.2016.04.035.
  • [8] Sayyad AS, Ghugal YM. A unified five-degree-of-freedom theory for the bending analysis of softcore and hardcore functionally graded sandwich beams and plates. J Sandwich Struct Mater. 2019. https://doi.org/10.1177/1099636219840980.
  • [9] Hadji L, Safa A. Bending analysis of softcore and hardcore functionally graded sandwich beams. Earthquakes Struct Int J.2020;18(4):481–92. https://doi.org/10.12989/eas.2020.18.4.481.
  • [10] Wang ZX, Shen HS. Nonlinear analysis of sandwich plates with FGM face sheets resting on elastic foundations. Compos Struct. 2011;93(10):2521–32. https://doi.org/10.1016/j.compstruct.2011.04.014.
  • [11] Neves AMA, Ferreira AJM, Carrera E, Cinefra M, Jorge RMN, Soares CMM. Static analysis of functionally graded sandwich plates according to a hyperbolic theory considering Zig-Zag and warping effects. Adv Eng Softw. 2012;52:30–43. https://doi.org/10.1016/j.advengsoft.2012.05.005.
  • [12] Natarajan S, Manickam G. Bending and vibration of functionally graded material sandwich plates using an accurate theory. Finite Elem Anal Des. 2012;57:32–42. https://doi.org/10.1016/j.finel.2012.03.006.
  • [13] Li D, Deng Z, Xiao H. Thermomechanical bending analysis of functionally graded sandwich plates using four variable refined plate theory. Compos Part B-Eng. 2016;106:107–19. https://doi.org/10.1016/j.compositesb.2016.08.041.
  • [14] Li D, Deng Z, Chen G, Xiao H, Zhu L. Thermomechanical bending analysis of sandwich plates with both functionally graded face sheets and functionally graded core. Compos Struct. 2017;169:29–41. https://doi.org/10.1016/j.compstruct.2017.01.026.
  • [15] Nguyen TK, Nguyen VH, Chau-Dinh T, Vo TP, Nguyen XH. Static and vibration analysis of isotropic and functionally graded sandwich plates using an edge-based MITC3 finite elements. Compos Part B-Eng. 2016;107:162–73. https://doi.org/10.1016/j.compositesb.2016.09.058.
  • [16] Mehar K, Panda S. Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure. Eur J Mech A/Solids. 2017;65:384–96. https://doi.org/10.1016/j.euromechsol.2017.05.005.
  • [17] Rachedi MA, Benyoucef S, Bouhadra A, Bachir Bouiadjra R, Sekkal M, Benachour A. Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation. Geomech Eng. 2020;22(1):65–80. https://doi.org/10.12989/gae.2020.22.1.065.
  • [18] Merzoug M, Bourada M, Sekkal M, Ali Chaibdra A, Belmokhtar C, Benyoucef S, Benachour A. 2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: effect of the micromechanical models. Geomech Eng. 2020;22(4):361–74. https://doi.org/10.12989/gae.2020.22.4.361.
  • [19] Yang Z, Lu H, Sahmani S, Safaei B. Isogeometric couple stress continuum-based linear and nonlinear flexural responses of functionally graded composite microplates with variable thickness. Archiv Civ Mech Eng. 2021;21:114. https:// doi. org/ 10. 1007/s43452-021-00264-w.
  • [20] Ghobadi A, Golestanian H, Beni YT, Kamil Zur KK. On the size-dependent nonlinear thermo-electro-mechanical free vibration analysis of functionally graded flexoelectric nano-plate. Commun Nonlinear Sci Numer Simul. 2020;95:105585. https://doi.org/10.1016/j.cnsns.2020.105585.
  • [21] Wattanasakulpong N, Ungbhakorn V. Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerosp Sci Technol. 2014;32(1):111–20. https://doi.org/10.1016/j.ast.2013.12.002.
  • [22] Akbaş ŞD. Thermal effects on the vibration of functionally graded deep beams with porosity”. J Appl Mech. 2017;9(5):1750076. https://doi.org/10.1142/S1758825117500764.
  • [23] Akbaş ŞD. Post-buckling responses of functionally graded beams with porosities. Steel Compos Struct. 2017. https://doi.org/10.1298/scs.2017.24.5.579.
  • [24] Akbaş ŞD. Vibration and static analysis of functionally graded porous plates. J Appl Comput Mech. 2017;3(3):199–207. https://doi.org/10.22055/jacm.2017.21540.1107.
  • [25] Akbaş ŞD. Stability of a non-homogenous porous plate by using generalized differantial quadrature method. J Eng Appl Sci. 2017;9(2):147–55. https://doi.org/10.24107/ijeas.322375.
  • [26] Eltaher MA, Fouda N, El-midany T, Sadoun AM. Modified porosity model in analysis of functionally graded porous nanobeams. J Braz Soc Mech Sci Eng. 2018;40(3):141. https://doi.org/10.1007/s40430-018-1065-0.
  • [27] Kiran MC, Kattimani SC, Vinyas M. Porosity influence on structural behaviour of skew functionally graded magneto-electro-elastic plate. Compos Struct. 2018;191:36–77. https://doi.org/10.1016/j.compstruct.2018.02.023.
  • [28] Ahmed RA, Fenjan RM, Faleh NM. Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections. Geomech Eng. 2019;17(2):175–80. https://doi.org/10.12989/gae.2019.17.2.175.
  • [29] Avcar M. Free vibration of imperfect sigmoid and power law functionally graded beams. Steel Composite Struct. 2019;30(6):603–15. https://doi.org/10.12989/SCS.2019.30.6.603.
  • [30] Yaghoobi H, Taheri F. Analytical solution and statistical analysis of buckling capacity of sandwich plates with uniform and non-uniform porous core reinforced with graphene nanoplatelets. Compos Struct. 2020;252: 112700. https://doi.org/10.1016/j.compstruct.2020.112700.
  • [31] Hadji L, Avcar M. Free vibration analysis of FG porous sandwich plates under various boundary conditions. J Appl Comput Mech. 2021;7(2):505–19. https://doi.org/10.2205/JACM.2020.35328.2628.
  • [32] Phung-Van P, Ferreira AJM, Thai CH. Computational optimization for porosity-dependent isogeometric analysis of functionally graded sandwich nanoplates. Compos Struct. 2020;239: 112029. https://doi.org/10.1016/j.compstruct.2020.112029.
  • [33] Fenjan RM, Moustafa NM, Faleh NM. Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM. Adv Nano Res. 2020;8(4):283–92. https://doi.org/10.1298/anr.2020.8.4.283.
  • [34] Vinyas M. On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT. Composite Struct. 2020;240: 112044. https:// doi. org/ 10. 1016/j. comps truct. 2020.112044.
  • [35] Hadji L. Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model. Smart Struct Syst. 2020;26(2):253–62. https://doi.org/10.12989/sss.2020.26.2.253.
  • [36] Chen D, Yang J, Kitipornchai S. Buckling and bending analyses of a novel functionally graded porous plate using Chebyshev-Ritz method. Arch Civil Mech Eng. 2019;19(1):157–70. https://doi.org/10.1016/j.acme.2018.09.004.
  • [37] Beni YT. Size dependent coupled electromechanical torsional analysis of porous FG flexoelectric micro/nanotubes. Mech Syst Signal Process. 2022;178: 109281. https:// doi. org/ 10. 1016/j.ymssp.2022.109281.
  • [38] Dehkordi AA, Goojani RJ, Beni YT. Porous flexoelectric cylindrical nanoshell based on the non-classical continuum theory. Appl Phys A. 2022;128:478. https:// doi. org/ 10. 1007/s00339-022-05584-z.
  • [39] Sh EL, Kattimani S, Vinyas M. Nonlinear free vibration and transient responses of porous functionally graded magneto-electroelastic plates. Archiv Civ Mech Eng. 2022;22:38. https://doi.org/10.1007/s43452-021-00357-6.
  • [40] Beni YT, Alihemmati J. On the coupled transient hygrothermal analysis in the porous cylindrical panels. Transp Porous Med. 2022;142:89–114. https://doi.org/10.1007/s11242-021-01605-2.
  • [41] Daouadji TH, Hadji L. Analytical solution of nonlinear cylindrical bending for functionally graded plates. Geomech Eng. 2015;9(5):631–44. https://doi.org/10.12989/GAE.2015.9.5.631.
  • [42] Akbas SD. Wave propagation of a functionally graded beam in thermal environments. Steel Composite Struct. 2015;19(6):1421–47. https://doi.org/10.12989/SCS.2015.19.6.1421.
  • [43] Attia MA. On the mechanics of functionally graded nanobeams with the account of surface elasticity. Int J Eng Sci. 2017;115:73–101. https://doi.org/10.1016/j.ijengsci.2017.03.011.
  • [44] Panda SK, Singh BN. Nonlinear finite element analysis of thermal post-buckling vibration of laminated composite shell panel embedded with SMA fibre. Aerosp Sci Technol. 2013;29(1):47–57. https://doi.org/10.1016/j.ast.2013.01.007.
  • [45] Singh VK, Panda SK. Nonlinear free vibration analysis of single/doubly curved composite shallow shell panels. Thin-Walled Struct. 2014;85:341–9. https://doi.org/10.1016/j.tws.2014.09.003.
  • [46] Mehar K, Panda SK. Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure. Adv Nano Res. 2019;7(3):181–90. https://doi.org/10.12989/ANR.2019.7.3.181.
  • [47] Madenci E. A refined functional and mixed formulation to static analyses of fgm beams. Struct Eng Mech. 2019;69(4):427–37. https://doi.org/10.12989/sem.2019.69.4.427.
  • [48] Timesli A. Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation. Comput Concrete. 2020;26(1):53–62. https://doi.org/10.12989/CAC.2020.26.1.053.
  • [49] Selmi A. Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam. Smart Struct Syst. 2020;26(3):361–71. https://doi.org/10.12989/SSS.2020.26.3.361.
  • [50] Abed ZAK, Majeed WI. Effect of boundary conditions on harmonic response of laminated plates. Composite Mater Eng. 2020;2(2):125–40. https://doi.org/10.12989/cme.2020.2.2.125.
  • [51] Madenci E, Gülcü Ş. Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM. Struct Eng Mech. 2020;75(5):633–42. https://doi.org/10.12989/sem.2020.75.5.633.
  • [52] Madenci E, Özütok A. Variational approximate for high order bending analysis of laminated composite plates. Struct Eng Mech. 2020;73(1):97–108. https://doi.org/10.12989/sem.2020.73.1.097.
  • [53] Madenci E. Free vibration analysis of carbon nanotube RC nanobeams with variational approaches. Adv Nano Res. 2021;11(2):157–71. https://doi.org/10.12989/anr.2021.11.2.157.
  • [54] Madenci E. Free vibration and static analyses of metal-ceramic FG beams via high-order variational MFEM. Steel Composite Struct. 2021;39(5):493–509. https://doi.org/10.12989/scs.2021.39.5.493.
  • [55] Yahea HT, Majeed WI. Free vibration of laminated composite plates in thermal environment using a simple four variable plate theory. Composite Mater Eng. 2021;3(3):179–99. https://doi.org/10.12989/cme.2021.3.3.179.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b395f4f4-8a0e-4d0e-91fb-ee28ae4297b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.