Identyfikatory
Warianty tytułu
Oddziaływanie eliptycznego wtrącenia ze szczeliną w osnowie kompozytu podczas dynamicznego obciążania
Języki publikacji
Abstrakty
The strain-rate effects on the interaction between a matrix crack and an elliptic inclusion in granule composites under dynamic tensile loadings are investigated numerically. It is found that the crack deflection/penetration behavior depends on the relative strength and local curvature of the interface as well as the loading-rate (or strain-rate). For a certain interfacial strength, there exists a critical strain-rate above which the crack can penetrate across the interface; otherwise, the crack deflection occurs. Moreover, the critical strain-rate is found to be dependent only on the local curvature of the interface near the crack tip regardless of the size and shape of the elliptic inclusions.
W pracy przedstawiono rezultaty symulacji numerycznych wpływu szybkości zmian stanu naprężenia na interakcje pomiędzy szczeliną w osnowie i eliptycznym wtrąceniu w kompozycie granulkowym poddanym dynamicznemu obciążeniu rozciągającemu. Stwierdzono, że odkształcenie i (lub) penetracja szczeliny zależy od względnej wytrzymałości oraz lokalnej krzywizny powierzchni kontaktu pomiędzy wtrąceniem a osnową. Wykazano także ich zależność od tempa zmian obciążenia (lub odkształcenia). Zauważono, że przy pewnym poziomie wytrzymałości powierzchni kontaktu pojawia się krytyczna wartość tempa zmian odkształcenia, powyżej której szczelina propaguje w poprzek powierzchni kontaktu, w przeciwnym razie ugina się. Zgodnie z wynikami badań, krytyczna wartość szybkości zmian odkształcenia okazała się zależna wyłącznie od miejscowej krzywizny powierzchni kontaktu przy wierzchołku szczeliny, bez względu na rozmiar i kształt eliptycznego wtrącenia.
Czasopismo
Rocznik
Tom
Strony
327--337
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- Beijing Institute of Technology, State Key Laboratory of Explosion Science and Technology, Beijing, China
autor
- Beijing Institute of Technology, State Key Laboratory of Explosion Science and Technology, Beijing, China
autor
- Beijing Institute of Technology, State Key Laboratory of Explosion Science and Technology, Beijing, China
autor
- Beijing Institute of Technology, State Key Laboratory of Explosion Science and Technology, Beijing, China
Bibliografia
- 1. Arias I., Knap J., Chalivendra V.B., Hong S., Ortiz M., Rosakis A.J., 2007, Numerical modeling and experimental validation of dynamic fracture events along weak planes, Computer Methods in Applied Mechanics and Engineering, 196, 3833-3840
- 2. Barenblatt G.J., 1962, The mathematical theory of equilibrium crack in the brittle fracture, Advance in Applied Mechanics, 7, 55-125
- 3. Brara A., Klepaczko J.R., 2007, Fracture energy of concrete at high loading rates in tension, International Journal of Impact Engineering, 34, 424-435
- 4. Buyukozturk O., Hearing B., 1998, Crack propagation in concrete composites influenced by interface fracture parameters, International Journal of Solids and Structures, 35, 4055-4066
- 5. Cai M., Kaiser P.K., Suorineni F., Su K., 2007, A study on the dynamic behavior of the Meuse/Haute-Marne argillite, Physics and Chemistry of Earth, 32, 907-916
- 6. Chandra N., Li H., Shet C., Ghonem H., 2002, Some issues in the application of cohesive zone models for metal-ceramic interfaces, International Journal of Solids and Structures, 39, 2827-2855
- 7. Cook T.S., Erdogan F., 1972, Stresses in bonded materials with a crack perpendicular to the interface, International Journal of Engineering Sciences, 10, 677-697
- 8. Cotsovos D.M., Pavlović M.N., 2008a, Numerical investigation of concrete subjected to high rates of uniaxial tensile loading, International Journal of Impact Engineering, 35, 319-335
- 9. Cotsovos D.M., Pavlović M.N., 2008b, Numerical investigation of concrete subjected to compressive impact loading. Part 1: A fundamental explanation for the apparent strength gain at high loading rates, Computers and Structures, 86, 145-163
- 10. Cotsovos D.M., Pavlović M.N., 2008c, Numerical investigation of concrete subjected to compressive impact loading. Part 2: Parametric investigation of factors affecting behaviour at high loading rates, Computers and Structures, 86, 164-180
- 11. Geubelle P.H., Baylor J., 1998, Impact-induced delamination of laminated composites: a 2D simulation, Composites Part B-engineering, 29, 589-602
- 12. He M.Y., Hutchinson J.W., 1989, Crack deflection at an interface between dissimilar elastic materials, International Journal of Solids and Structures, 25, 1053-1067
- 13. Kasano H., Watanabe T., Matsumoto H., Nakahara I., 1986, Singular stress fields at the tips of a crack normal to the bi-material interface of isotropic and anisotropic half planes, Bulletin of JSME – Japan Society of Mechanical Engineers, 29, 4043-4049
- 14. Kolednik O., Predan J., Shan G.X., Simha N.K., Fischer F.D., 2005, On the fracture behavior of inhomogeneous materials, a case study for elastically inhomogeneous biomaterials, International Journal of Solids and Structures, 42, 605-620
- 15. Liu L.G., Ou Z.C., Duan Z.P., Huang F.L., 2010, Strain-rate effects on deflection /penetration of crack terminating perpendicular to bimaterial interface under dynamic loadings, International Journal of Fracture, 167, 135-145
- 16. Ma C.C., Hour B.L., 1990, Antiplane problems in composite anisotropic materials with an inclined crack terminating at a bimaterial interface, International Journal of Solids and Structures, 26, 1387-1400
- 17. Ou Z.C., Duan Z.P., Huang F.L., 2010, Analytical approach to the strain rate effect on the dynamic tensile strength of brittle materials, International Journal of Impact Engineering, 37, 942-945
- 18. Rice J.R., 1968, Mathematical analysis in the mechanics of fracture, [In:] Liebowitz H. (Edit.), Fracture, 2, Academic Press, New York
- 19. Rice J.R., Wang J.S., 1989, Embrittlement of interfaces by solute segregation, Material Science and Engineering A, 107, 23-40
- 20. Siegmund T., Fleck N.A., Needleman A., 1997, Dynamic crack growth across an interface, International Journal of Fracture, 85, 381-402
- 21. Wei X.Y., Hao H., 2009, Numerical derivation of homogenized dynamic masonry material properties with strain rate effects, International Journal of Impact Engineering, 36, 522-536
- 22. Wijeyewickrema A.C., Dundurs J., Keer L.M., 1995, The singular stress field of a crack terminating at a frictional interface between two materials, Journal of Applied Mechanics, 62, 289-293
- 23. Xu L.R., Huang Y.Y., Rosakis A.J., 2003, Dynamic crack defection and penetration at interfaces in homogeneous materials: experimental studies and model predictions, Journal of the Mechanics and Physics of Solids, 51, 461-486
- 24. Xu X.P., Needleman A., 1994, Numerical simulations of fast crack growth in brittle solids, Journal of Mechanics and Physics of Solids, 42, 1397-1434
- 25. Zak A.R., Williams M.L., 1963, Crack point stress singularities at a bi-material interface, Journal of Applied Mechanics, 30, 142-143
- 26. Zhang M.H., Shim V.P.W., Lu G., Chew C.W., 2005, Resistance of high-strength concrete to projectile impact, International Journal of Impact Engineering, 31, 825-841
- 27. Zhang W., Deng X., 2007, Elastic fields around the cohesive zone of a mode III crack perpendicular to a bimaterial interface, ASME Journal of Applied Mechanics, 74, 1049-1052
- 28. Zhang Z.Y., Paulino G.H., 2005, Cohesive zone modeling of dynamic failure in homogeneous and functionally graded materials, International Journal of Plasticity, 21, 1195-1254
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b3951eca-7fb1-454e-808e-2b8ca1f6278b