Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Czy zajmowanie centralnej pozycji w formalnej sieci poprawia zdobycie zaufania? Analiza sieci socjalnych istniejących w strukturach łańcucha dostaw
Języki publikacji
Abstrakty
Background: This research attempts to extend the understanding and application of embeddedeness theory beyond the general network structure. Previous research on network analysis largely focused on the context of the decentralized network structure and how it impacts on the performance of the network member. However, each member of a supply network is embedded in a centralized network structure. The focal firm often plays the commanding role in such structure. Thus, the supply network is a centralized network because of the existence of the focal firm. The existence of the focal firm may influence the impact of firm performance, particularly on the generation of relational capital. Hence, the objective of this research is to determine how formality derives from the centralization of the supply network and influences trust projection in the supply network structure so that it is possible to organize supply network resources to their optimum capacity. Methods: Basing on the previously applied approach of Social Network Analysis from the sociology research field, we adopted the Social Network Analysis methodology to collect data on supply network connectivity or relations. Using an Exponential Random Graph Model [ERGM], we developed a random search algorithm for network relational capital optimization. Exponential Random Graph Modeling [ERGM] is a statistical method for modeling the generative processes that create social networks. In ERGM, the log-odds of a tie between members of a dyad of nodes or actors in the network are essentially modeled using an exponential form analogous to logistic regressions. Results: The findings of this study indicate that centrality negatively influences trust projection in the supply network. Hence, a firm embedded in upstream supply network benefits differently in terms of relational capital through the different degree of embeddedness. The firm's resources should be re-aligned to match the benefits of the different network structural positions. Conclusion: The results of the statistical network analysis reveal interesting findings in terms of prominent structural forms and the impact of involvement or embeddedness in the formal of a supply network. What this means is that the more embedded a firm is in the upstream supply network based on the formal contract tie, the less the likelihood that it will be perceived as trustworthy by other network members. Consequently, this tells us that firms’ embbededness in a centralized network structure which is based on a formal contract ties have a negative impact on the firms’ level of trust perception.
Wstęp: Praca ma celu rozszerzenie znaczenia i stosowania poza strukturę sieci teorii zależności aktywności ekonomicznych od czynników socjalnych. Wcześniejsze badania dotyczące analizy sieci w dużej mierze koncentrowały się na zagadnieniu decentralizacji struktury sieci i wpływu tego procesu na działanie poszczególnych jej członków. Niemniej każdy członek łańcucha dostaw jest elementem zcentralizowanej struktury sieci. Zcentralizowana firma odgrywa przywódcza rolę w całej takiej strukturze. Dlatego też łańcuch dostaw jest siecią zcentralizowaną z powodu istnienia firmy przywódczej. Istnieje takiego typu firmy w sieci ma wpływ na wyniki działalności. Celem tej pracy jest określenie wpływu formalizmu, będącego wynikiem zcentralizowania łańcucha dostaw, ba poziom zaufania w obrębie tego łańcucha oraz możliwości organizacji wykorzystania zasobów tego łańcucha do uzyskania wykorzystania optimum zasobów. Metody: W oparciu o wcześniej stosowane podejście używające analizy sieci socjalnych, zastosowano metodologię analizy sieci socjalnych do zgromadzenia danych dotyczących połączeń i relacji w obrębie łańcucha dostaw. Przy użyciu modelu Exponential Random Graph Model [ERGM] opracowano losowo szukający algorytm dla rozwiązywania problemu optymalizacji relacji sieci. Exponential Random Graph Modeling [ERGM] to metoda statystyczna służąca kształtowaniu procesów generatywnych, tworzących sieci socjalne. W metodzie tej, zarówno połączenia nieparzyste jak i dwójki węzłów sieci są modelowane poprzez użycie postaci wykładniczej analogicznej do regresji logistycznej. Wyniki: Uzyskane wyniki badań wskazują, że centralizacja ma negatywny wpływ na poziom zaufania w łańcuchu dostaw. Firmy umieszczone w różnych częściach łańcucha dostaw zyskują w różny sposób z relacji socjalnych w obrębie tego łańcucha. Zasoby firmy musiałyby być przesunięte, aby uzyskiwać benefity wynikające z różnej pozycji w strukturze sieci. Wnioski: Wyniki uzyskane na podstawie analizy statystycznej sieci wskazują na ciekawe zależności w obrębie strukturalnych form, mający wpływ na zaangażowanie w formalnej strukturze łańcucha dostaw. Im dana firma znajduje się wyżej w sieci łańcucha dostaw w odniesieniu do formalnych połączeń i relacji, tym jest mniejsze prawdopodobieństwa, że będzie traktowana z zaufaniem przez innych członków danej sieci. W konsekwencji, należy wysunąć wniosek, że ze wzrostem pozycji w zcentralizowanej sieci, zaufanie do danej firmy maleje.
Wydawca
Czasopismo
Rocznik
Tom
Strony
85--102
Opis fizyczny
Bibliogr. 75 poz., tab.
Twórcy
autor
- School of Management, Faculty of Economic and Management, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
autor
- School of Management, Faculty of Economic and Management, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
autor
- School of Management, Faculty of Economic and Management, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
Bibliografia
- 1. Anderson P., 1999. Complexity Theory and Organization Science, Organization Science 10[3]: 216-232. http://doi.org/10.1287/orsc.10.3.216
- 2. Bamber et al., 2010. What's my style? The influence of top managers on voluntary corporate financial disclosure. The Accounting Review 85: 1131. http://doi.org/10.2308/accr.2010.85.4.1131
- 3. Baum J.A.C., Oliver C., 1992. Institutional embeddedness and the dynamics of organizational populations. American sociological review: 540-559. https://www.jstor.org/stable/2096100
- 4. Bode C., Wagner S.M., 2015. Structural drivers of upstream supply chain complexity and the frequency of supply chain disruptions. Journal of Operations Management 36: 215-228. http://doi.org/10.1016/j.jom.2014.12.004
- 5. Borgatti, Li, 2009. On Social Network Analysis in a Supply Chain Context. Journal of Supply Chain Management 45[2]: 5-22. http://doi.org/10.1111/j.1745-493X.2009.03166.x
- 6. Borgatti S., Li X., 2009. On Social Network Analysis In a Supply Chain Context. Journal of Supply Chain Management 45[2]: 5-22. http://doi.org/10.1111/j.1745-493X.2009.03166.x
- 7. Borgatti S.P., Jones C., Everett M.G., 1998. Network measures of social capital. Connections, 21[2]: 27-36.
- 8. Bourdieu P., 2010. "The Forms of Capitalâ [1986]." Cultural Theory: An Anthology: 81.
- 9. Bozarth C.C., Warsin D.P., Flynn B.B., Flynn J., 2009. The impact of supply chain complexity on manufacturing plant performance. Journal of Operations Management 27[1]: 78-93. http://doi.org/10.1016/j.jom.2008.07.003
- 10. Burt R.S., 2001. Structural holes versus network closure as social capital. Social capital: Theory and research: 31-56.
- 11. Burt R.S., 2017. Structural Holes versus Network Closure as Social Capital [in Social Capital Theory and Research by Rene Dubos], Taylor & Francis Group
- 12. Choi, Kim, 2008. Structural Embeddedness and Supplier Management: A Network Perspective. Journal of Supply Chain Management 44[4]: 5-13. http://doi.org/10.1111/j.1745-493X.2008.00069.x
- 13. Choi T.Y., Krause D.R., 2006. The supply base and its complexity: Implications for transaction costs, risks, responsiveness, and innovation. Journal of Operations Management 24[5]: 637-652. http://doi.org/10.1016/j.jom.2005.07.002
- 14. Cousins P.D., Handfield R.B., Lawson B., Petersen K.J., 2006. Creating supply chain relational capital: The impact of formal and informal socialization processes. Journal of Operations Management 24[6]: 851-863. http://doi.org/10.1016/j.jom.2005.08.007
- 15. Cross R., Borgatii S.P., Parker A., 2002. Making invisible work visible: Using social network analysis to support strategic collaboration. California management review 44[2]: 25-46. http://doi.org/10.2307/41166121
- 16. Diani M., 2002. Network analysis. Methods of social movement research: 173-200.
- 17. Doney P.M., Cannon J.P., 1997. An examination of the nature of trust in buyer-seller relationships., the Journal of Marketing: 35-51. http://doi.org/10.1177/002224299706100203
- 18. Dubey R., et al., 2017. Upstream supply chain visibility and complexity effect on focal companyâ™s sustainable performance: Indian manufacturersâ™ perspective. Annals of Operations Research: 1-25. http://doi.org/10.1007/s10479-017-2544-x
- 19. Eccles R.G., 1981. Bureaucratic versus craft administration: the relationship of market structure to the construction firm. Administrative science quarterly: 449-469. http://doi.org/10.2307/2392517
- 20. Freeman L.C., 1979. Centrality in social networks conceptual clarification. Social Networks 1[3]: 215-239. http://doi.org/10.1016/0378-8733(78)90021-7
- 21. Galaskiewicz J., 2011. Studying Supply Chains From a Social Network Perspective. Journal of Supply Chain Management 47[1]: 4-8. http://doi.org/10.1111/j.1745-493X.2010.03209.x
- 22. Gell-Mann M., 1995. Complex adaptive systems, Addison-Wesley Publishing Co.
- 23. Giannoccaro I., 2018. Centralized vs. decentralized supply chains: The importance of decision maker's cognitive ability and resistance to change. Industrial Marketing Management 73: 59-69. http://doi.org/10.1016/j.indmarman.2018.01.034
- 24. Granovetter M., 1985. Economic Action and Social Structure: The Problem of Embeddedness. American Journal of Sociology 91[3]: 481-510. http://doi.org/10.1086/228311
- 25. Gulati R., 1998. Alliances and networks. Strategic Management Journal 19[4]: 293-317. http://doi.org/10.1002/(SICI)1097-0266(199804)19:4<293::AID-SMJ982>3.0.CO;2-M
- 26. Idris B., Saridakis G., 2018. Local formal interpersonal networks and SMEs internationalisation: Empirical evidence from the UK. International Business Review 27[3]: 610-624. http://doi.org/10.1016/j.ibusrev.2017.10.010
- 27. Jiang C.X., et al. 2011. Effects of cultural ethnicity, firm size, and firm age on senior executives™ trust in their overseas business partners: Evidence from China. Journal of International Business Studies 42[9]: 1150-1173. http://doi.org/10.1057/jibs.2011.35
- 28. Kim et al., 2010. Structural Investigation of Supply Networks: A Social Network Analysis Approach. Journal of Operations Management 2010. http://doi.org/10.1016/j.jom.2010.11.001
- 29. Kim Y., et al., 2015. Supply network disruption and resilience: A network structural perspective. Journal of Operations Management 33: 43-59. http://doi.org/10.1016/j.jom.2014.10.006
- 30. Knoke D., Kuklinski J., 1982. Network analysis, Sage Publications, Inc., https://trove.nla.gov.au/work/27222052?q&versionId=45734216
- 31. Krackhardt D., 1999. The ties that torture: Simmelian tie analysis in organizations. Research in the Sociology of Organizations 16[1999]: 183-210
- 32. Laaksonen T., et al., 2009. Cooperative strategies in customer-supplier relationships: The role of interfirm trust. International Journal of Production Economics 120[1]: 79-87. http://doi.org/10.1016/j.ijpe.2008.07.029
- 33. Lambert D., Cooper M., 2000. Issues in supply chain management. Industrial Marketing Management 29[1]: 65-83. http://doi.org/10.1016/S0019-8501(99)00113-3
- 34. Lazzarini S., et al. 2001. Integrating supply chain and network analyses: The study of netchains. Journal on chain and network science 1[1]: 7-22. http://doi.org/10.3920/JCNS2001.x002
- 35. Lee H., et al., 1997. Information distortion in a supply chain: the bullwhip effect. Management science 43[4]: 546-558.
- 36. Lee R., et al., 2019. Effects of structural, relational and cognitive social capital on resource acquisition: a study of entrepreneurs residing in multiply deprived areas. Entrepreneurship & Regional Development 31[5-6]: 534-554.
- 37. Lee R., Tuselmann H., Jayawarna D., Rouse J., 2019. Effects of structural, relational and cognitive social capital on resource acquisition: a study of entrepreneurs residing in multiply deprived areas, Entrepreneurship & Regional Development, 31:5-6, 534-554, http://doi.org/10.1080/08985626.2018.1545873
- 38. Li G., Sun H.Y. L., Ping Ji, Feng L., 2010. The evolutionary complexity of complex adaptive supply networks: A simulation and case study. International Journal of Production Economics 124[2]: 310. http://doi.org/10.1016/j.ijpe.2009.11.027
- 39. Lin Q., Su X., Peng Y., 2018. Supply chain coordination in confirming warehouse financing. Computers & Industrial Engineering 118: 104-111. http://doi.org/10.1016/j.cie.2018.02.029
- 40. Lincoln J., Sargent M. 2018. Business groups as networks.
- 41. Luoma-aho V., 2007. Neutral reputation and public sector organizations. Corporate Reputation Review 10[2]: 124-143. http://doi.org/10.1057/palgrave.crr.1550043
- 42. Lusher D., 2011. Masculinity, educational achievement and social status: a social network analysis. Gender and Education 23[6]: 655-675. http://doi.org/10.1080/09540253.2010.527825
- 43. Lusher D., Ackland R., 2010. A relational hyperlink analysis of an online social movement. Journal of Social Structure 11[1].
- 44. Lusher D., Robins G., Kremer P., 2010. The application of social network analysis to team sports. Measurement in physical education and exercise science 14[4]: 211-224. http://doi.org/10.1080/1091367X.2010.495559
- 45. Lusher D., Robins G., PattisonP.E., Lomi A., 2012. Trust Me: Differences in expressed and perceived trust relations in an organization. Social Networks. http://doi.org/10.1016/j.socnet.2012.01.004
- 46. Moran P., 2005. Structural vs. relational embeddedness: social capital and managerial performance. Strategic Management Journal 26[12]: 1129-1151. http://doi.org/10.1002/smj.486
- 47. Nahapiet J., Ghoshal S., 1998. Social capital, intellectual capital, and the organizational advantage. Academy of Management Review 23[2]: 242-266. http://doi.org/10.5465/amr.1998.533225
- 48. Nayak, S., Bhatnagar J., Budhwar P., 2018. Leveraging social networking for talent management: an exploratory study of Indian firms. Thunderbird International Business Review 60[1]: 21-37. https://doi.org/10.1002/tie.21911
- 49. Osman L.H., 2017. The Pattern of Inter-Organizational Level of Connectivity, Formal Versus Informal Ties. Jurnal Komunikasi: Malaysian Journal of Communication 33[1]
- 50. Osman L.H., 2018. Embeddedness Configuration and itsâ™ Relations to Inter-Firm connectivity in Supply Network: A Social Network Analysis Approach. Journal of International Trade, Logistics and Law 4[1]: 31
- 51. Pathak S., et al., 2007. Complexity and Adaptivity in Supply Networks: Building Supply Network Theory Using a Complex Adaptive Systems Perspective. Decision Sciences 38[4]: 547-580. http://doi.org/10.1111/j.1540-5915.2007.00170.x
- 52. Polyviou M., Croxton K.L., Knemeyer A.M., 2019. Resilience of medium-sized firms to supply chain disruptions: the role of internal social capital. International Journal of Operations & Production Management. http://doi.org/10.1108/IJOPM-09-2017-0530
- 53. Poppo L., Zenger T., 2002. Do formal contracts and relational governance function as substitutes or complements? Strategic Management Journal 23[8]: 707-725. http://doi.org/10.1002/smj.249
- 54. Powell W., 2003. Neither market nor hierarchy. The sociology of organizations: classic, contemporary, and critical readings: 315.
- 55. Putnam RD. The Prosperous Community: Social Capital and Public Life. The American Prospect [Internet]. 1993;(13) :35-42.
- 56. Robins G., Elliott P., Pattison P., 2001. Network models for social selection processes. Social Networks 23[1]: 1-30. http://doi.org/10.1016/S0378-8733(01)00029-6
- 57. Robins, G., Lewis J.M., Wang P., 2012. Statistical Network Analysis for Analyzing Policy Networks. Policy Studies Journal 40[3]: 375-401. http://doi.org/10.1111/j.1541-0072.2012.00458.x
- 58. Robins, G., Pattison P., Wang P., 2009. Closure, connectivity and degree distributions: Exponential random graph [p*] models for directed social networks. Social Networks 31[2]: 105-117. http://doi.org/10.1016/j.socnet.2008.10.006
- 59. Romo F.P., Schwartz M., 1995. The Structural Embeddedness of Business Decisions: The Migration of Manufacturing Plants in New York State, 1960 to 1985. American sociological review 60[6]: 874-907. http://doi.org/10.2307/2096431
- 60. Rowley T., Behrens D., Krackhardt D., 2000. Redundant governance structures: an analysis of structural and relational embeddedness in the steel and semiconductor industries. Strategic Management Journal 21[3]: 369-386. http://doi.org/10.1002/(SICI)1097-0266(200003)21:3<369::AID-SMJ93>3.0.CO;2-M
- 61. Schell, S., Hiepler M., Moog P., 2018. It’s all about who you know: The role of social networks in intra-family succession in small and medium-sized firms. Journal of Family Business Strategy 9[4]: 311-325. http://doi.org/10.1016/j.jfbs.2018.08.003
- 62. Scott J., 1988. Social network analysis. Sociology 22[1]: 109. http://doi.org/10.1177/0038038588022001007
- 63. Shumate M., Palazzolo E.T., 2010. Exponential Random Graph [p*] models as a method for social network analysis in communication research. Communication Methods and Measures 4[4]: 341-371. http://doi.org/10.1080/19312458.2010.527869
- 64. Sivadasan, Smart J., Huatuco L.H., Calinescu A., 2010. Operational complexity and supplier-customer integration: case study insights and complexity rebound. The Journal of the Operational Research Society 61[12]: 1709. http://doi.org/10.1057/jors.2009.138
- 65. Snijders T.A.B., Pattison P.E., Robins G.L., Handcock M.S., 2006. New specifications for exponential random graph models. Sociological Methodology 36[1]: 99-153. http://doi.org/10.1111/j.1467-9531.2006.00176.x
- 66. Starovic D., Marr B., 2003. Understanding corporate value: managing and reporting intellectual capital, CIMA.
- 67. Starovic D., Marr B., 2004. Understanding Corporate Value: Managing and Reporting Intellectual Capital. The Chartered Institute of Management Accountants (CIMA) and Cranfield University, London. http://www.cimaglobal.com/Documents/ImportedDocuments/intellectualcapital.pdf
- 68. Uzzi B., 1996. The sources and consequences of embeddedness for the economic performance of organizations: The network effect. American sociological review 61[4]: 674-698. https://www.jstor.org/stable/2096399
- 69. Uzzi B., 1997. Social structure and competition in interfirm networks: The paradox of embeddedness. Administrative science quarterly 42[1]: 35-67. http://doi.org/10.2307/2393808
- 70. Wang P., et al., 2006. PNet: Program for the estimation and simulation of p* exponential random graph models, User Manual. Department of Psychology, University of Melbourne.
- 71. Wasserman S., Galaskiewicz J., 1994. Advances in social network analysis: Research in the social and behavioral sciences, Sage Publications, Inc. http://dx.doi.org/10.4135/9781452243528
- 72. Wegner D., Faccin K., Dolci P.C., 2018. Opening the black box of small-firm networks: governance mechanisms and their impact on social capital. International Journal of Entrepreneurship and Small Business 35[4]: 559-578.
- 73. Wilding R., 1998. The supply chain complexity triangle. Management 28[8]: 599-616. http://doi.org/10.1108/09600039810247524
- 74. Yan Y., Guan J., Zhang J., 2019. Network Embeddedness and Innovation: Evidence From the Alternative Energy Field. IEEE Transactions on Engineering Management. http://doi.org/10.1109/TEM.2018.2885462
- 75. Zaheer A., Bell G.G., 2005. Benefiting from network position: firm capabilities, structural holes, and performance. Strategic Management Journal 26[9]: 809. http://doi.org/10.1002/smj.482
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b39356a4-dc34-4b6f-ab95-4ecc6584733d