PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A system for 256-channel in vitro recording of the electrophysiological activity of brain tissue

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A measurement system for 256-channel in vitro recordings of brain tissue electrophysiological activity is presented in the paper. The system consists of the brain tissue life support system, Microelectrode Array (MEA), conditioning Application Specific Integrated Circuits (ASIC’s) for signals conditioning, Digitizer and PC application for measurement data presentation and storage. The life support system keeps brain tissue samples in appropriately saturated artificial cerebrospinal fluid at a very stable temperature. The MEA consists of two hundred and fifty-six 40 μm diameter tip-shaped electrodes. The ASIC’s performs amplification and filtering of the 256-field and action potential signals. The Digitizer performs simultaneous data acquisition from 256 channels 14 kS/s sample rate and 12-bit resolution. The resulting byte stream is transmitted to the PC via USB (Universal Serial Bus). Preliminary tests confirm that the system is capable of keeping the extracted brain tissue active (hippocampal formation slices) and simultaneously to record action potentials, as well as local theta field potentials with very small amplitudes from multiple neurons.
Rocznik
Strony
371--384
Opis fizyczny
Bibliogr. 14 poz., rys., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, Department of Measurement and Electronics, al. A. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] Ahuja A. K. et al. (2008). An In Vitro Model of a Retinal Prosthesis. 2008, IEEE Transactions on Biomedical Engineering, 55 (6), 1744-1753.
  • [2] Hochberg L. R., et al. (2012). Reach and grasp by people with tetraplegia using a neutrally controlled robotic arm. Nature, 485, 372-377.
  • [3] Litke A. et al. (2004). What does the eye tell the brain?: Development of system for the large-scale recording of retinal output activity. IEEE Transactions on Nuclear Science, 51, 1434-1440.
  • [4] Bland B.H., Colom L.V. (1993) Extrinsic and intrinsic properties underlying oscillation and synchrony in limbic cortex, Prog. Neurobiol., 41, 157-208.
  • [5] Kowalczyk T., Bocian R., Konopacki J. (2013) The generation of theta rhythm in hippocampal formation maintained in vitro. European Journal of Neuroscience, 37, 679-699.
  • [6] Paul L. Nunez, Srinivasan R. (2006) Electric Fields Of The Brain. Oxford University Press Inc.; New York; ISBN: 0-19-505038-X.
  • [7] Matt C., Shieh J., (2010) Guide to Research Techniques in Neuroscience. Academic Press
  • [8] Kowalczyk T., Konopacki J., Bocian R., Caban B. (2013) Theta-related gating cells in hippocampal formation: in vivo and in vitro study. Hippocampus, 23, 30-39.
  • [9] Santos L., Opris I., Fuqua J., Hampson R. E., Deadwyler S. A. (2012). A novel tetrode microdrive for simultaneous multi-neuron recording from different regions of primate brain, Journal of NeuroscienceMethods, 205, 368-374.
  • [10] Jog M.S., Connolly C.I., Kubota Y., Iyengar D.R., Garrido L., Harlan R., Graybiel A.M. (2002). Tetrode technology: advances in implantable hardware, neuroimaging, and data analysis techniques. Journal of Neuroscience Methods, 117, 141-152.
  • [11] Grybos P., et al. (2011). 64 channel neural recording amplifier with tunable bandwidth in 180 nm CMOS technology. Metrology and Measurements, XVIII (4), 631-644.
  • [12] Gryboś P. (2002). Low Noise Multichannel Integrated Circuits in CMOS Technology for Physics andBiology Applications. Monography 117, AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne, Kraków 2002, available at: www.kmet.agh.edu.pl/www/asics.
  • [13] Kyung Hwan Kim, Sung June Kim (October 2000). Neural Spike Sorting Under Nearly 0-dB Signal-to- Noise Ratio Using Nonlinear Energy Operator and Artificial Neural-Network Classifier. IEEE Transactions on Biomedical Engineering, 47 (10).
  • [14] Zumsteg Z. S., Kemere C., O’Driscoll S., Santhanam G., Ahmed R. E., Shenoy K. V., T. H. (September 2005) Power feasibility of implantable digital spike sorting circuits for neural prosthetic systems, IEEE Transactions on Neural Systems and Rechabilitation Engineering. 13 (3).
Uwagi
EN
Scientific work financed from budget funds for science in the years 2010-1013 as a research project (N N505 559139).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b38ea952-d685-451a-b656-a1ff03d8c580
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.