PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of ageing on microstructure and mechanical properties of TP347HFG austenitic stainless steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of microstructural and mechanical investigation of long-term aged TP347HFG austenitic stainless steel. Ageing was performed at a time of up to 30 000 hours and the temperature of 600 and 650◦C. Ageing was proved to lead to the precipitation of secondary phase particles not only inside grains but also on the boundaries of grains and twins. The MX precipitates were observed inside the grains. However, M23C6 carbides and sigma phase precipitates were observed on grain boundaries. The changes in the microstructure of the examined steel translated into the mechanical properties, i.e. initially observed growth and then the decrease of yield strength and a gradual decrease in impact energy. The overageing process – a decrease in strength properties – was associated with the growth of the size of M23C6 carbides and the precipitation of the sigma phase. The reduction of impact energy in TP347HFG austenitic stainless steel was found to be associated with the precipitation of M23C6 carbides in the case of the 600◦C temperature, and the M23C6 carbides and sigma phase in the case of the 650◦C temperature. The rate of changes in the microstructure and mechanical properties depended on the ageing temperature.
Rocznik
Strony
art. no. e144607
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Czestochowa University of Technology, Department of Materials Science, Armii Krajowej 19, 42-200 Częstochowa, Poland
  • Łukasiewicz Research Network – Institute for Ferrous Metallurgy, K. Miarki 12-14, 44-100 Gliwice, Poland
Bibliografia
  • [1] J. Jurasz and J. Mikulik, “Economic and environmental analysis of a hybrid solar, wind and pumped storage hydroelectric energy source: a Polish perspective,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 6, pp. 859–869, 2017, doi: 10.1515/bpasts-2017-0093.
  • [2] M. Bartecka, P. Terlikowski, M. Kłos, and Ł. Michalski, “Sizing of prosumer hybrid renewalble energy systems in Poland,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 4, pp. 721–731, 2020, doi: 10.24425/bpasts.2020.133125.
  • [3] A. Iseda, H. Okada, H. Semba, and M. Igarashi, “Long term creep properties and microstructure of SUPER304H, TP347HFG and HR3C for A-USC boilers,” Energy Mater., vol. 2 no. 4, pp. 199–206, 2007, doi: 10.1179/174892408X382860.
  • [4] A. Zieliński, R. Wersta, and M. Sroka, “Analysis of the precipitation process of secondary phases after long-term ageing of S304H steel, ”Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, pp. 1–7, 2023, doi: 10.24425/bpasts.2023.137520.
  • [5] R.O. Kaibyshev, V.N. Skorobogatykh, and I.A. Shchenkova, “Formation of the Z-phase and prospects of martensitic steels with 11%Cr for operation above 590°C,” Metal Science and Heat Treatment, vol. 52, pp. 90–99, 2010, doi: 10.1007/s11041-010-9239-0.
  • [6] T. Dudziak, T. Hussain, and N.J. Simms, “High-temperature performance of ferritic steels in fireside corrosion regimes: temperature and deposits,” J. Mater. Eng. Perform., vol. 26, pp. 84–93, 2017, doi: 10.1007/s11665-016-2423-7.
  • [7] K. Yoshikawa, H. Teranishi, K. Tokimasa, H. Fujikawa, M. Miura, and K. Kubota, “Fabrication and properties of corrosion resistant TP347H stainless steel,” Journal of Materials Engineering, vol. 10, pp. 69–84, 1988, doi: 10.1007/BF02834116.
  • [8] A. Zieliński, R. Wersta, and M. Sroka, “The study of the evolution of microstructure and creep properties of Super 304H austenitic stainless steel after aging for up to 50 000 h,” Arch. Civ. Mech. Eng., vol. 22, no. 2, pp. 1–24, 2022, doi: 10.1007/s43452-022-00408-6.
  • [9] A. Zieliński, G. Golański, and M. Sroka, “Evolution of the microstructure and mechanical properties of HR3C austenitic stainless steel after ageing for up to 30,000 h at 650–750°C,” Mater. Sc. Eng., vol. 796A, p. 139944, 2020, doi: 10.1016/j.msea.2020.139944.
  • [10] K. Ogawa, Y. Sawaragi, N. Otsuka, H. Hirata, A. Natori, and S. Matsumoto, “Mechanical and corrosion properties of high strength 18%Cr austenitic stainless steel weldment for boiler,” ISIJ Int., vol. 35, no. 10, pp. 1258–1264, 1995, doi: 10.2355/isijinternational.35.1258.
  • [11] X.F. Zhang, H. Terasaki, and Y. Komizo, “In situ investigation of structure and stability of niobum carbonotrides in an austenitic heat-resistant steel,” Sc. Mater., vol. 67, pp. 201–204, 2012, doi: 10.1016/j.scriptamat.2012.04.019.
  • [12] G. Golański, A. Zieliński, and H. Purzyńska, “Precipitation process in creep-resistant austenitic steels,” in Austenitic Stainless Steels, Borek W., Tański T., Brytan Z., Eds. InTech Publ., 2017; pp. 93–112, doi: 10.5772/intechopen.70941.
  • [13] D.M.E. Villanueva, F.C.P. Junior, R.L. Plaut, and A.F. Padilha, “Comparative study on sigma phase precipitation of three types of stainless steels: austenitic, superferritic and duplex,” Mater. Sc. Techn., vol. 22, no. 9, pp. 1098–1104, 2006, doi: 10.1179/174328406X109230.
  • [14] Q.-Q. Ren, Y. Yamamoto, M.P. Brady, and J.D. Poplawsky, “Sigma phase evolution and nucleation mechanisms revealed by atom probe tomography in a 347 stainless steel,” Materialia, vol. 24, p. 101485, 2022, doi: 10.1016/j.mtla.2022.101485.
  • [15] K. Guan, X. Xu, and Z. Wang, “Effect of aging at 700°C on precipitation and toughness AISI 321 and AISI 347 austenitic stainless steel welds,” Nucl. Eng. Des., vol. 235, pp. 2485–2494, 2005, doi: 10.1016/j.nucengdes.2005.06.006.
  • [16] D.-Y. Lin, T.-Ch. Chang, and G.L. Liu, “Effect of Si content on the growth behavior of s phase in SUS 309L stainless steels,” Sc. Mater., vol. 39, no. 9, pp. 855–860, 2003, doi: 10.1016/S1359-6462(03)00481-0.
  • [17] Ch. Solenthaler, M. Ramesh, P.J. Uggowitzer, and R. Spolenak, “Precipitation strengthening of Nb-stabilized TP347 austenitic steels by a dispersion of secondary Nb(C, N) formed upon a short-term hardening heat treatment,” Mater. Sc. Eng., vol. 647A, pp. 294–302,2015, doi: 10.1016/j.msea.2015.09.028.
  • [18] J. Erneman, M. Schwind, H.-O. Adren, J.-O. Nilsson, A.Wilson, and J. Agren, “The evolution of primary and secondary niobum carbonotrides in AISI 347 stainless steel during manufacturing and long-term ageing,” Acta Mater., vol. 45, no. 1, pp. 67–76, 2006, doi: 10.1016/j.actamat.2005.08.028.
  • [19] M.R. Ahmadi, E. Povoden-Karadeniz, B. Sonderegger, K.I. Öksüz, A. Falahati, and E. Kozeschnik, “A model for coherency strengthening of large precipitates,” Scr. Mater., vol. 84-85, pp. 47–50, 2014, doi: 10.1016/j.scriptamat.2014.04.019.
  • [20] L. Li and X.Wang, “Strengthening mechanism and creep rupture behavior of advanced heat–resistant steel SA-213 S31035 for AUSC power plants,” Mat. Sci. Eng., vol. 775A, 138991, 2020, doi: 10.1016/j.msea.2020.138991.
  • [21] R. Zhou and L. Zhu, “Growth behavior and strengthening mechanism of Cu – rich particles in Sanicro 25 austenitic heat–resistant steel after aging at 973 K,” Mater. Sci. Eng. A, vol. 796, p. 139973, 2020, doi: 10.1016/j.msea.2020.139973.
  • [22] L. Zhang, L. Zhu, and Z. Lu, “Microstructural evolution and the effect on mechanical properties of S30432 heat–resistant steel during aging at 650°C,” ISIJ Inter., vol. 50, pp. 596–600, 2010, doi: 10.2355/isijinternational.50.596.
  • [23] F.B. Pickering, “Historical development and microstructure of high chromium ferritic steels for high temperature applications,” in Microstructural development and stability in high chromium ferritic power plant steels, A. Strang and D.J. Gooch, Eds. The Institute of Materials Cambridge, London, 1997, pp. 1–29.
  • [24] H. Wang, Y. Li, D. Chen, and J. Sun, “Precipitate evolution the ageing of Super304H steel and its influence on impact toughness,” Mater. Sc. Eng., vol. 754A, pp. 238–245, 2019, doi: 10.1016/j.msea.2019.03.086.
  • [25] J. Horvath, P. Kral, and J. Janovec, “The effect of s-phase formation on long-term durability of welding joints in Super 304H,” Acta Phys. Pol. A, vol. 130, no. 4, pp. 960–962, doi: 10.12693/APhysPolA.130.960.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b37ff308-de18-4f47-90d2-a51a573c3159
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.