PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The layer-specific biomechanical properties of dissecting ascending aortic aneurysm (Stanford type A of dissection)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aims of this paper was the analysis of the mechanical properties of dissected wall of the ascending aortic aneurysm (n = 12). Methods: All aortas were collected from men (mean age: 48 ± 12 years, mean diameter of the aneurysm: 49 mm ± 4 mm). The mechanical properties were determined based on directional tensile test. The biomechanical assay was complemented by conducting histological analysis (hematoxylin and eosin, Mallory’s trichrome, Azan stain). Results: The highest values (median) of failure Cauchy stress, failure force, Young’s modulus and stiffness coefficient were obtained for the adventitia (max = 1.40 MPa, Fmax = 4.05 N, E = 26.11 MPa, k = 1.06 N/mm). Conclusions: The results indicate that the mechanical function of the adventitia in healthy tissue and dissected ascending aorta aneurysm is the same, i.e., it protects the vessel against destruction. The failure Cauchy stresses found in the media and intima are comparable and amounted to 0.23 and 0.21 MPa, respectively. The results indicate that dissection affects the mechanical properties of ascending aorta wall layers. The mechanical loads are probably transferred within the dissected aneurysmal wall not only through the media, but also through the intima.
Rocznik
Strony
3--14
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mechanics, Materials and Biomedical Engineering, Wrocław University of Science and Technology, Wrocław, Poland.
  • Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Wrocław, Poland.
  • Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Wrocław, Poland.
Bibliografia
  • [1] BABU R., BYJU G., GUNDIAH N., Biomechanical properties of human ascending thoracic aortic dissections, Journal of Biomechanical Engineering, DOI: 10.1115/1.4030752.
  • [2] BRUNET J., PIERRAT B., BADEL P., Review of Current Advances in the Mechanical Description and Quantification of Aortic Dissection Mechanisms, IEEE Reviews in Biomedical Engineering, 2021, 14, 240–255.
  • [3] DEVEJA R.P., ILIOPOULOS D.C., KRITHARIS E.P., ANGOURAS D.C., SFYRIS D., PAPADODIMA S.A., SOKOLIS D.P., Effect of Aneurysm and Bicuspid Aortic Valve on Layer-Specific Ascending Aorta Mechanics, 2018; DOI: https://doi.org/10.1016/j.athoracsur.2018.05.071.
  • [4] DUPHREY A., KHANAFER K., SCHLICHT M., AVRIL S., WILIAMS D., BERGUER R., In Vitro Characterisation of Physiological and Maximum Elastic Modulus of Ascending Thoracic Aortic Aneurysms Using Uniaxial Tensile Testing, European Journal of Vascular and Endovascular Surgery, 2010, 39, 700–707.
  • [5] DUPREY A., TRABELSI O., VOLA M., FAVRE J.-P., AVRIL S., Biaxial rupture properties of ascending thoracic aortic aneurysms, Acta Biomaterialia, 2016, 42, 273–285.
  • [6] Humphrey J.D., Possible Mechanical Roles of Glycosaminoglycans in Thoracic Aortic Dissection and Associations with Dysregulated TGF-β, Journal of Vascular Research, 2013, 50 (1), 1–10.
  • [7] ILIOPOULOS D.C., DEVEJA R.P., KRITHARIS E.P., PERREA D., SIONIS G.D., TOUTOUZAS K., STEFANADIS C., SOKOLIS D.P., Regional and directional variations in the mechanical properties of ascending thoracic aortic aneurysm, Medical Engineering & Physics, 2009, 31, 1–9.
  • [8] ILIOPOULOS D.C., KRITHARIS E.P., GIAGINI S.A., PAPADODIMA S.A., SOKOLIS D.P., Ascending thoracic aortic aneurysms are associated with compositional remodeling and vessel stiffening but not weakening in age-matched subjects, Journal of Thoracic and Cardiovascular Surgery, 2009, 137, 101–109.
  • [9] KARMONIK C., BISMUTH J., SHAH D.J., DAVIES M.G., PURDY D., LUMSDEN A.B., Computational study of haemodynamic effects of entry- and exit-tear coverage in a DeBakey type III aortic dissection: Technical report, European Journal of Vascular and Endovascular Surgery, 2011, 42, 172–177.
  • [10] KOBIELARZ M., Effect of collagen fibres and elastic lamellae content on the mechanical behaviour of abdominal aortic aneurysms, Acta of Bioengineering and Biomechanics, 2021, 22, 3, 9–21.
  • [11] KOBIELARZ M., KOZUŃ M., KUZAN A., MAKSYMOWICZ K., WITKIEWICZ W., PEZOWICZ C., The intima with early atherosclerotic lesions is load-bearing component of human thoracic aorta, Biocybernetics and Biomedical Engineering, 2017, 37, 35–43.
  • [12] KOZUŃ M., KOBIELARZ M., CHWIŁKOWSKA A., PEZOWICZ C., The impact of development of atherosclerosis on delamination resistance of the thoracic aortic wall, Journal of the Mechanical Behavior of Biomedical Materials, 2018, 79, 292–300.
  • [13] KOZUŃ M., PŁONEK T., JASIŃSKI M., FILIPIAK J., Effect of dissection on the mechanical properties of human ascending aorta and human ascending aorta aneurysm, Acta Bioeng. Biomech., 2019, 2, 127–134.
  • [14] MACLEAN N.F., DUDEK N.L., ROACH M.R., The role of radial elastic properties in the development of aortic dissection, Journal of Vascular Surgery, 1999, 29, 703–710.
  • [15] MANOPOULOS C., KARATHANASIS I., KOURINIS I., ANGOURAS D.C., LAZARIS A., TSANGARIS S., SOKOLIS P.D., Identification of regional/layer differences in failure properties and thickness as important biomechanical factors responsible for the initiation of aortic dissection, Journal of Biomechanics, 2018, 80, 102–110.
  • [16] NIENABER C.A., EAGLE K.A., Aortic dissection: new frontiers in diagnosis and management. Part I: from etiology to diagnostic strategies. Circulation, 2003, 108, 628–635.
  • [17] OKAMOTO R.J., XU H., KOUCHOUKOS N.T., MOON M.R., SUNDT T.M., The influence of mechanical properties on wall stress and distensibility of the dilated ascending aorta, Surgery for Acquired Cardiovascular Disease, 2003, 126 (3), 842–850.
  • [18] OSADA M., KYOGOKU M., MORISHIMA I.M., NAKAJIMA H., Aortic dissection in the outer third of the media: What is the role of the vasa vasorum in the triggering process?, European Journal of Cardio-Thoracic Surgery, 2013, 43 (3), 82–88.
  • [19] PASTA S., PHILLIPPI J.A., GLEASON T.G., VORP D.A., Effect of aneurysm on the mechanical dissection properties of the human ascending thoracic aorta, Journal of Thoracic and Cardiovascular Surgery, 2012, 143 (2), 460–467.
  • [20] RAJAGOPAL K., BRIDGES C., RAJAGOPAL K.L., Towards an understanding of the mechanics underlying aortic dissection, Biomechanics and Modeling in Mechanobiology, 2007, 6 (5), 345–359.
  • [21] ROCCABIANCA S., Biomechanical roles of medial pooling of glycosaminoglycans in thoracic aortic dissection, Biomechanics and Modelling in Mechanobiology, 2013, DOI: 10.1007/s10237-013-0482-3.
  • [22] SHERIFOVA S., HOLZAPFEL G.A., Biomechanics of aortic wall failure with a focus on dissection and aneurysm: A review, Acta Biomaterialia, 2019, 99, 1–17.
  • [23] SOKOLIS D.P., KRITHARIS E.P., ILIOPOULOS D.C., Effect of layer heterogeneity on the biomechanical properties of ascending thoracic aortic aneurysm, Medical and Biological Engineering and Computing, 2012, 50, 1227–1237.
  • [24] SOMMER G., SHERIFOVA S., OBERWALDER P.J., DAPUNT O.E., URSOMANNO P.A., DEANDA A., GRIFFITH B.E., HOLZAPFEL G.A., Mechanical strength of aneurysmatic and dissected human thoracic aortas at different shear loading modes, Journal of Biomechanics, 2016, 49, 2374–2382.
  • [25] SZOTEK S., DAWIDOWICZ J., GENIUSZ M., KOZAK M., ŁUKOMSKI R., CZOGALLA R., The biomechanical characteristics of spinal dura mater in the context of its basic morphology, Acta of Bioengineering and Biomechanics, DOI: 10.37190/ABB-01972-2021-02.
  • [26] TENG Z., FENG J., ZHANG Y., HUANG Y., SUTCLIFFE M.P.F., BROWN A.J., JING Z., GILLARD J.H., LU Q., Layer- and direction- specific material properties, extreme extensibility and ultimate material strength of human abdominal aorta and aneurysm: A uniaxial extension study, Annals of Biomedical Engineering, 2015, 43 (11), 2745–2759.
  • [27] VILACOSTA J., Acute aortic syndrome, Heart, 2001, 85 (4), 365–368.
  • [28] VORP D.A., SCHIRO B.J., EHRLICH M.P., JUVONEN T.S., ERGIN M.A., GRIFFITH B.P., Effect of Aneurysm on the Tensile Strength and Biomechanical Behavior of the Ascending Thoracic Aorta, The Annals of Thoracic Surgery, 2003, (75), 1210–1214.
  • [29] WEISBECKER H., PIERCE D.M., REGITNIG P., HOLZAPFEL G.A., Layer-specific damage experiments and modeling of human thoracic and abdominal aortas with non-atherosclerotic intimal thickening, Journal of the Mechanical Behavior of Biomedical Materials, 2012, 12, 93–106.
  • [30] XUAN Y., WISNESKI A.D., WANG Z., LUM M., KUMAR S., PALLONE J., FLORES N., INMAN J., LAI L., LIN J., GUCCIONE J.M., TSENG E.E., GE L., Regional biomechanical and failure properties of healthy human ascending aorta and root, Journal of the Mechanical Behavior of Biomedical Materials, 2021, 123, 1–10.
  • [31] YAMADA H., SAKATA N., WADA H., TASHIRO T., TAYAMA E.,Age-related distensibility and histology of the ascending aorta in elderly patients with acute aortic dissection, Journal of Biomechanics, 2015, 48 (12), 3267–3273.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b37c2595-4d21-43a0-8e43-beb683a4c3c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.