PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of the Technological Parameters Process for Continuously Cast Brass Ingot

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article discusses issues related to continuous casting of brass. The tested material was CuZn39Pb2 brass with the use of continuous casting and different parameters of the process. The position consists of a melting furnace with a graphite refining pot of about 4000 cm3 chuting capacity, a graphite crystallizer of 9,5 mm nominal diameter, a primary and secondary cooling system and an extracting system as well. The analysis was carried out in terms of technological parameters of the process and type of charge. Highlighted: feedrate ingot, number of stops, and technological temperatures. The surface quality of the obtained ingots and the structure were analyzed. The most favorable conditions were indicated and technological recommendations indicated. They have been distinguished for ingots for plasticity and other technologies. Favorable casting conditions are low feed and low temperature. Due to the presence of impurities coming from the charge it is disadvantageous to have Ni greater than 0.053% by mass, and Fe more than 0.075% by mass. It is recommended to maintain a high zinc content in the melt which is associated with non-overheating of the metal during casting and earlier melting.
Słowa kluczowe
Rocznik
Strony
9--14
Opis fizyczny
Bibliogr. 15 poz., fot., tab., wykr.
Twórcy
  • University of Zielona Góra, Faculty of Mechanical Engineering, Podgórna 50, Zielona Góra, Poland
  • AGH University of Science and Technology, Al. Mickiewicza 30, Kraków, Poland
autor
  • University of Zielona Góra, Faculty of Mechanical Engineering, Podgórna 50, Zielona Góra, Poland
  • Institute of Metallurgy and Materials PAN, Reymonta 25, Kraków, Poland
autor
  • BOLMET S.A., Wiechlice, Poland
Bibliografia
  • [1] Kozana, J., Rzadkosz, St. & Piękoś, M. (2010). Influence of the selected alloy additions on limiting the phase gamma formation in Cu-Zn alloys. Archives of Foundry Engineering. 10(1), 221-225. ISSN (1897-3310).
  • [2] Anakhov, S.V. & Fominykh, S.I. (1997). Effect of the cooling rate after remelting on the structure of antifriction brass. Metal Science and Heat Treatment. 39(6), 240-243. ISSN (0026-0673).
  • [3] Kondracki, M. & Szajnar, J. (2007). Possibilities for leaded brass replacement with multi-component brass. Archives of Foundry Engineering. 7(2), 57-64. ISSN (1897-3310).
  • [4] Ziółkowski, E. (2006). Theoretical basis of the parameters balance algorithm of the charge combined the charge materials with imprecise chemical constitution (in Polish). Archives of Foundry. 19(6), 443-448. ISSN 1642-5308.
  • [5] Hunt, J.D. (1984). SteadyState Columnar and Equiaxed Growth of Dendrites and Eutectics. Materials Science and Engineering. 65, 75-83. ISSN (2161-6213).
  • [6] Weigand, B. & Lipnicki, Z. (2016). Development of the contact layer and its role in the phase change process. International Journal of Heat and Mass Transfer. 93, 1082- 1088. ISSN (0017-9310).
  • [7] Vusanović, I. & Voller, V.R. (2014). Understanding Channel Segregates in Numerical Models of Alloy Solidification: A Case of Converge First and Ask Questions Later. Materials Science Forum. 790/791, 73-78.
  • [8] Szajnar, J. (2004). The Columnar Crystals Shape and Castings Structure Cast in Magnetic Field. Journal of Materials Processing Technology. 157/158, 761-764.
  • [9] Gandin, Ch.A., Mosbah, S., Volkmann, Th. &,Herlach, D.M. (2008). Experimental and Numerical Modeling of Equiaxed Solidification in Metallic Alloys. Acta Materialia. 56, 3023- 3035.
  • [10] McFadden, S., Browne, D.J. & Gandin, Ch.A. (2009). A Comparison of CET Prediction Methods using Simulation of the Growing Columnar Front. Metallurgical Transactions. 40A, 662-672.
  • [11] Konozsy, L., Ishmurzin, A., Grasser, M., Wu, M.H., Ludwig, A., Tanzer, R. & Schutzenhofer, W. (2010). Columnar to Equiaxed Transition during Ingot Casting using Ternary Alloy Composition. Materials Science Forum. 649, 349-354.
  • [12] Wołczyński, W. (2016). Large Steel Ingots: Microstructure Mathematical Modeling. Entry in: The Encyclopedia of Iron. Steel. and Their Alloys. Ed. CRC Press. Taylor & Francis Group. Boca Raton. London. New York. EdsRafaelColas. GeorgeE. Totten. v.III. Heat Treatment: Special –Molten. p. 1910-1924.
  • [13] Bydałek, A.W. Biernat, S., Schlafka, P., Holtzer, M., Wołczyński, W. & Bydałek. F. (2016). The Influence of the Chemical Composition of Selected Waste Materials from the Production of Copper on the Final Environmental Assessment. Archives of Metallurgy and Materials. 61(4), 2135-2140. ISSN (1733-3490).
  • [14] Schlafka, P., Bydałek. A.W., Holtzer, M., Wołczyński, W. (2016). The Influence Of The Ionic reactions On The Refining Secondary Raw Materials. Metalurgija. 55(4), 609-612. ISSN (0543-5846).
  • [15] Rzadkosz, S., Zych, J., Garbacz-Klempka, A., Kranc, M., Kozana, J., Piękoś, M., Kolczyk, J. & Jamrozowicz, Ł. (2015). Copper alloys in investment casting technology. Metalurgija. 54(1), 293-296. ISSN (0543-5846)
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b3783c2b-0ebf-4841-908b-26f813036631
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.