PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie procesora GPU w analizie nieustalonego pola temperatury w trójwymiarowym modelu elektrycznego ogrzewania podłogowego

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
The application of GPU in the analysis of transient temperature field in a threedimensional model of electric floor heating system
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono numeryczną analizę nieustalonego pola temperatury w trójwymiarowym modelu elektrycznego grzejnika podłogowego. Sformułowano odpowiednie zagadnienie brzegowo-początkowe, które dyskretyzowano niejawną metodą różnic skończonych. Otrzymane układy równań rozwiązano przy wykorzystaniu metody BiCGStab i procesora GPU. Dodatkowe zastosowanie procesora GPU pozwoliło ponad 5-krotnie skrócić czas obliczeń w stosunku do programu pracującego tylko na procesorze CPU.
EN
This paper presents the numerical analysis of the transient temperature field in a three-dimensional model of an electric floor heater. An appropriate initial-boundary value problem was formulated, which was discretised using the implicit finite difference method. Obtained systems of equations were solved using the BiCGStab method and the GPU. The additional application of the GPU reduced the time of computations over 5 times compared to the program executed only on the CPU.
Rocznik
Strony
154--160
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Politechnika Białostocka, Wydział Elektryczny, ul. Wiejska 45D, 15-351 Białystok
Bibliografia
  • [1] Grama A., Gupta A., Karypis G., Kumar V., Introduction to Parallel Computing, Second Edition, Addison Wesley, (2003).
  • [2] Storti D., Yurtoglu M., CUDA for Engineers: An Introduction to High-Performance Parallel Computing, Addison-Wesley Professional, (2015).
  • [3] Kirk D.B., Hwu W.W., Programming Massively Parallel Processors: A Hands-on Approach, Third Edition, Morgan Kaufmann, (2016).
  • [4] Holopainen R., Tuomaala P., Piippo J., Uneven gridding of thermal nodal networks in floor heating simulations, Energy and Buildings, 39 (2007), No. 10, 1107-1114.
  • [5] Watson R.D., Chapman K.S., Radiant Heating & Cooling Handbook, McGraw-Hill Companies, (2004).
  • [6] Weitzmann P., Kragh J., Roots P., Svendsen S., Modelling floor heating systems using a validated two-dimensional ground-coupled numerical model, Building and Environment, 40 (2005), 153-163.
  • [7] Sattari S., Farhanieh B., A parametric study on radiant floor heating system performance, Renewable Energy, 31 (2006), No. 10, 1617-1626.
  • [8] Jin X., Zhang X., Luo Y., A calculation method for the floor surface temperature in radiant floor system, Energy and Buildings, 42 (2010), No. 10, 1753-1758.
  • [9] Larsen S.F., Filippín C., Lesino G., Transient simulation of a storage floor with a heating/cooling parallel pipe system, Building Simulation, 3 (2010), No. 2, 105-115.
  • [10] Liu Y., Wang D., Liu J., Study on heat transfer process for inslab heating floor, Building and Environment, 54 (2012), 77-85.
  • [11] Li Q., Chen Ch., Zhang Y., Lin J., Ling H., Ma Y., Analytical solution for heat transfer in a multilayer floor of a radiant floor system, Building Simulation, 7 (2014), No. 3, 207-216.
  • [12] Chen Y., Athienitis A.K., Three-dimensional numerical investigation of the effect of cover materials on heat transfer in floor heating systems, ASHRAE Transactions, 104 (1998), No. 2, 1350-1355.
  • [13] Gołębiowski J., Kwiećkowski S., Dynamics of threedimensional temperature field in electrical system of floor heating, International Journal of Heat and Mass Transfer, 45 (2002), No. 12, 2611-2622.
  • [14] Lin K., Zhang Y., Xu X., Di H., Yang R., Qin P., Modeling and simulation of under-floor electric heating system with shapestabilized PCM plates, Building and Environment, 39 (2004), No. 12, 1427-1434.
  • [15] Gołębiowski J., Forenc J., The influence of side thermal insulation on distribution of the temperature field in an electrical floor heater, Przegląd Elektrotechniczny, 92 (2016), No. 12, 271-277.
  • [16] Howard B.D., The CMU air-core passive hybrid heat storage system, in: Proceedings of the Renewable and Advanced Energy Systems for the 21st Century, Lahaina, Maui, Hawaii, USA, (1999).
  • [17] Bozkır O., Canbazoğlu S., Unsteady thermal performance analysis of a room with serial and parallel duct radiant floor heating system using hot airflow, Energy and Buildings, 36 (2004), No. 6, 579-586.
  • [18] Gołębiowski J., Forenc J., Parallel computations of the step response of a floor heater with the use of a graphics processing unit. Part 1: Models and algorithms, Bull. Pol. Ac.: Tech., 61 (2013), No. 4, 943-948.
  • [19] Forenc J., GPU-based parallel method of temperature field analysis in a floor heater with a controller, Open Engineering, 6 (2016), No. 1, 152-163.
  • [20] Lewis R.W., Nithiarasu P., Seetharamu K.N., Fundamentals of the Finite Element Method for Heat and Fluid Flow, John Wiley&Sons, (2004).
  • [21] Reddy J.N., Gartling D.K., The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition, CRC Press, (2010).
  • [22] Incropera F., De Witt D., Bergman T., Lavine A., Introduction to Heat Transfer, John Wiley&Sons, Hoboken, (2007).
  • [23] Tveito A., Winther R., Introduction to Partial Differential Equations. A Computational Approach, Texts in Applied Mathematics, 29 (2005), Springer-Verlag, Berlin Heidelberg.
  • [24] Nowak A.J. (ed.), Numerical Methods in Heat Transfer, International Studies in Science and Engineering, 11, Papierflieger-Verlag, Clausthal-Zellerfeld, (2009).
  • [25] Ibanez M.-T., Power H., Advanced Boundary Elements for Heat Transfer. Topics in Engineering Vol. 42, WIT Press, (2002).
  • [26] Barrett R., Berry M., Chan T.F., Demmel J., Donato J.M., Dongarra J., Eijkhout V., Pozo R., Romine Ch., Van der Vorst H., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, (1994).
  • [27] Saad Y., Iterative Methods for Sparse Linear Systems, Second Edition, SIAM, (2003).
  • [28] Intel Math Kernel Library. Reference Manual, MKL 10.3 Update 10, Intel Corporation, (2012).
  • [29] Jalili-Marandi V., Dinavahi V., SIMD-based large-scale transient stability simulation on the graphics processing unit, IEEE Trans. on Power Systems, 25 (2010), No. 3, 1589-1599.
  • [30] Naumov M., Preconditioned Block-Iterative Methods on GPUs, Proceedings in Applied Mathematics and Mechanics, 12 (2012), No. 1, 11-14.
  • [31] Haeri S., Shrimpton J.S., Fully resolved simulation of particle deposition and heat transfer in a differentially heated cavity, International Journal of Heat and Fluid Flow, 50 (2014), 1-15.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b374b9ef-5146-48e6-a679-e2b9a2b7dd72
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.