PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fotopolimeryzacja (met)akrylanów w masie

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Bulk photopolymerization of (met)acrylates
Języki publikacji
PL
Abstrakty
EN
Meth(acrylate) polymers are prepared by polymerization according to the radical mechanism. This is possible due to the occurrence of unsaturated double bonds (vinyl groups) in monomers. Meth(acrylate) polymerization reaction is usually carried out in organic solvents using thermal initiators which decompose at elevated temperature to give radicals. An appropriately selected initiator or electromagnetic radiation (e.g. UV light) can be used to initiate the polymerization process. In this case the process is called photopolymerization. Due to the fact that the radical photopolymerization mechanism of met(acrylates) has already been well understood, and the advantages of lightinduced polymerization offer enormous possibilities, this technology still attracts the attention of researchers and industrialists, which results in its continuous development. Meth(acrylates), which are very reactive, are suitable compounds for this technology. Light induced process of transformation these molecules into polymer can be carried out in a very short time. In addition, a wide range of monomers allows to obtain products with various properties. Typically, photopolymerization is associated with the cross-linking of polymers that form part of photocurable compositions, as a result of which, for example, varnish coatings, dental fillings or self-adhesive materials are produced. In this article, contemporary literature on the photopolymerization of (meth)acrylates with reference to the photopolymerization in bulk method is also pointed out. This technique allows to obtain polymer syrups - a polymer solution in unreacted monomers. These viscous liquids are very interesting semi-finished products (free of solvent and almost ready for application) for the preparation of various polymer materials, especially coatings and adhesives.
Rocznik
Strony
443--459
Opis fizyczny
Bibliogr. 62 poz., schem.
Twórcy
autor
  • Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, Wydział Technologii i Inżynierii Chemicznej, ul. Pułaskiego 10, 70-322 Szczecin
  • Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, Wydział Technologii i Inżynierii Chemicznej, ul. Pułaskiego 10, 70-322 Szczecin
Bibliografia
  • [1] J. Scheirs, Historical Overview of Styrenic Polymers, Modern Styrenic Polymers: Polystyrene and Styrenic Copolymers. Edit. by J. Scheirs and D. B. Priddy 2003.
  • [2] Patent US 2610120A, Photosensitization of polymeric cinnamic acid esters.
  • [3] Patent US 2760863A, Photographic preparation of relief images.
  • [4] A. B. Scranton, C. N. Bowman, R. W. Peiffer. Photopolymerization: fundamentals and application, ACS symposium series, 673, Waszyngton, 1997.
  • [5] X. Pan, N. Malhotra, S. Dadashi-Silab, K. Matyjaszewski, A Simplified Fe-Based PhotoATRP Using Only Monomers and Solvent, Macromol. Rapid Commun. 2017, 38, 1600651.
  • [6] C. Decker, Photoinitiated crosslinking polymerisation, Prog. Polym Sci. 1996, 21, 593.
  • [7] J. Pączkowski, Fotochemia polimerów: teoria i zastosowanie, Toruń, 2003.
  • [8] J. G. Drobny, Radiation Technology for Polymers, CRC Press, Boca Raton, 2010.
  • [9] Y. Yagci, S. Jockusch, N. J. Turro, Photoinitiated Polymerization: Advances, Challenges, and Opportunities, Macromol. 2010, 43, 6245.
  • [10] E. Andrzejewska, A. Marcinkowska, M. Podgórska, I. Stępniak, M. Sądej, Fotopolimeryzacja: nowe badania, nowe materiały, Polimery 2009, 54, 327.
  • [11] I. V. Khudyakov, Fast photopolymerization of acrylate coatings: Achievements and problems, Prog. Org. Coat. 2018, 121, 151.
  • [12] P. Glöckner, T. Jung, S. Struck, K. Studer, Radiation Curing for Coatings and Printing Inks, Vincentz Network, Hannover, 2008.
  • [13] M. Sangermano, I. Roppolo, A. Chiappone, New Horizons in Cationic Photopolymerization, Polymers 2018, 10(2), 136.
  • [14] W. A. Braunecker, K. Matyjaszewski, Controlled/living radical polymerization: features, developments, and perspectives, Prog. Polym. Sci. 2007, 32, 93.
  • [15] M. Chen, M. Zhong, J.A. Johnson, Light-Controlled Radical Polymerization: Mechanisms, Methods and Applications, Chem. Rev. 2016, 116(17), 10167.
  • [16] Z. Florjańczyk, S. Penczek, Chemia Polimerów (tom I), Wydawnictwo Politechniki Warszawskiej, Warszawa, 2002.
  • [17] W. A. Green, Industrial Photoinitiators: A Technical Guide, CRC Press 2010, 86.
  • [18] J. Segurola, S. N. Allena, M. Edge, A. McMahona, S. Wilson, Photoyellowing and discolouration of UV cured acrylated clear coatings systems: influence of photoinitiator type, Polym. Degrad. Stab. 1999, 64(1), 39.
  • [19] R. V. Slone, Methacrylic Ester Polymers in Encyclopedia of Polymer Science and Technology, 2010.
  • [20] C. E. Carraher, Jr, Introduction to Polymer Chemistry Fourth Edition, CRC Press, Taylor & Francis Group, Boca Raton, 2017, 7, 271.
  • [21] J. Vandenbergh, T. Junkers, Polyacrylates, O. Olabisi, K. Adewale (Eds.), Handbook of Thermoplastics (2nd ed.), CRC Press, Boca Raton, 2016, 169-192.
  • [22] Z. Czech, A. Kowalczyk, J. Kabatc, J. Świderska, Photoreactive UV-crosslinkable solvent-free acrylic pressure-sensitive adhesives containing copolymerizable photoinitiators based on benzophenones, Eur. Polym. J. 2012, 48(8), 1446.
  • [23] D. Prządka, A. Marcinkowska, E. Andrzejewska, POSS-modified UV-curable coatings with improved scratch hardness and hydrophobicity, Prog. Org. Coat. 2016, 100, 165.
  • [24] P. Bednarczyk, K. Gziut, A. Kowalczyk, Preparation and properties of urethane acrylate varnishes obtained by bulk photopolymerization, Przem. Chem. 2018, 97(11), 1000.
  • [25] N. S. Allen, M. Edge, A. R. Jasso, T. Corrales, M. Tellez-Rosas, Control of stereoregularity in poly(methyl methacrylate) by photoinitiated polymerization, J. Photochem. Photobiol. A 1997, 102(2-3), 253.
  • [26] F. Jasinski, P. B. Zetterlund, A. M. Braun, A. Chemtob, Photopolymerization in dispersed systems, Prog. Polym. Sci. 2018, 84, 47.
  • [27] K. Jain, J. Klier, A. B. Scranton, Photopolymerization of butyl acrylate-in-water microemulsions: Polymer molecular weight and end-groups, Polymer, 2005, 46(25), 11273.
  • [28] Y. Cui, J. Yang, Z. Zeng, Z. Zeng, Y. Chen, Monitoring frontal photopolymerization by electroresistance, Eur. Polym. J. 2007, 43(9), 3912.
  • [29] C. Nason, Todd Roper, C. Hoyle, J. A. Pojman, UV-Induced Frontal Polymerization of Multifunctional (Meth)acrylates, Macromol. 2005, 38.
  • [30] E. Andrzejewska, Photoinitiated polymerization in ionic liquids and its application, Polym. Int., 2017, 66, 366.
  • [31] E. Andrzejewska, M. Podgorska-Golubska, I. Stepniak, M. Andrzejewski, Photoinitiated polymerization in ionic liquids: Kinetics and viscosity effects, Polymer 2009, 50(9), 2040.
  • [32] S. Turri, M. Levi, E. Emilitri, R. Suriano, R. Bongiovanni, Direct Photopolymerisation of PEG Methacrylate Oligomers for an Easy Prototyping of Microfluidic Structures, Macromol. Chem. Phys. 2010, 211(8), 879.
  • [33] P. J. LeValley, B. Noren, P. M. Kharkar, A. M. Kloxin, J. C. Gatlin, J. S. Oakey, Fabrication of Functional Biomaterial Microstructures by in Situ Photopolymerization and Photodegradation, ACS Biomater. Sci. Eng. 2018, 4, 3078.
  • [34] C. Guo, X. Qu, N. Rangaswamy, B. Leehy, C. Xiang, D. Rice, A murine glaucoma model induced by rapid in vivo photopolymerization of hyaluronic acid glycidyl methacrylate, PLOS ONE 2018, 13(6), e0196529.
  • [35] M. Zhao, F. Danhier, C. Bastiancich, N. Joudiou, L. Pallavi, G. N. Tsakiris, B. Gallez, A. des Rieux, A. Jankovski, J. Bianco, V. Préat, Post-resection treatment of glioblastoma with an injectable nanomedicine-loaded photopolymerizable hydrogel induces long-term survival, Int. J. Pharm. 2018, 548(1), 522.
  • [36] I. V. Khudyakov, N. Arsu, S. Jockusch, N. J. Turro, Magnetic and spin effects in the photoinitiation of polymerization, Des. Monomers Polym. 2003, 6(1), 91.
  • [37] M. A. Tasdelen, M. Ciftci, Y. Yagci, Visible Light Induced Atom Transfer Radical Polymerization, Macromol. Chem. Phys. 2012, 213(13), 1391.
  • [38] K. Borská, D. Moravcíková, J. Mosnácek, Photochemically Induced ATRP of (Meth)Acrylates in the Presence of Air: The Effect of Light Intensity, Ligand, and Oxygen Concentration, Macromol. Rapid Commun. 2017, 38(13), 1600639.
  • [39] P. Bednarczyk, M. Pawlikowska, Z. Czech, Primers used in UV-curable nail varnishes, Int. J. Adhes. Adhes. 2017, 74, 177.
  • [40] Z. Czech, A.K. Antosik, P. Bednarczyk, UV-crosslinkable photoreactive self-adhesive hydrogels based on acrylics, Pol. J. Chem. Tech. 2016, 18(2), 126.
  • [41] A. Mozelewska, P.Bednarczyk, Z. Czech, Wpływ krotności sieciowania UV na właściwości akrylanowych klejów samoprzylepnych, Przem. Chem. 2018, 1( 9), 149.
  • [42] Y. Feng, Q. Deng J. Hu, C. Peng, Q. Wu, Z. Xu, Study on gel weight fraction of ultraviolet- cured acrylic adhesives, Chem. Pap. 2019, 73(2), 517.
  • [43] M. Sangermano, A. Chiolerio, G. Marti, P. Martino, UV Cured Acrylic Conductive Inks for Microelectronic Devices, Macromol. Mat. Eng. 2013, 298(6), 607.
  • [44] J. P. Fouassier, J. Lalevée, Photoinitiators for Polymer Synthesis: Scope, Reactivity and Efficiency, Wiley-VCH, Weinheim, 2012.
  • [45] V. Maurin, С. Croutxé-Barghorn, X. Allonas, Photopolymerization process of UV powders. Characterization of coating properties, Prog. Org. Coat. 2012, 73 (2-3), 250
  • [46] M. Sarrafi, B. Kaffashi, S. Bastani, Investigation of cure advancement in dual-cure polyurethane-acrylate coatings over metal substrates, J. Coat. Technol. Res. 2018, 15(3), 527
  • [47] M. Mohsenia, S. Bastaniab, A. Jannesari, Influence of silane structure on curing behavior and surface properties of sol-gel based UV-curable organi-inorganic hybrid coatings, Prog. Org. Coat. 2014, 77(7), 1191.
  • [48] A. Mougharbel, J. Mallégol, X. Coqueret, Diffusion Behavior of Isohornyl Acrylate into Photopolymerized Urethane Acrylate Films: Influence of Surface Oxidation during Curing, Langmuir 2009, 25(17), 9831.
  • [49] Z. Sadakhayeva, M. Dušková-Smrčková, A Sturcová, J. Pfleger, К. Dušek, Microstructured poly(2-hydroxyethyl methacrylate)/poly(glycerol monomethacrylate) interpenetrating network hydrogels: UV-scattering induced accelerated formation and tensile behaviour, Eur. Polym. J. 2018, 101, 304.
  • [50] V. E. Podasca, A. L. Chibac, T. Buruiana, E. C. Buruiana, Impact of ZnO and ZnO/Ag nanoparticles on the photocatalytic activity of photopolymerized films, J. Coat. Tech. Res. 2016, 1.
  • [51] V. Melinte, A. Chibac, T. Buruiana, E. C.Buruiana, Hybrid nanocomposites prepared by in situ photopolymerization using photoinitiator-modified montmorillonite, Prog. Org. Coat. 2017, 104, 125.
  • [52] P. Garra, F. Dumur, D. Gigmes, A. Al Mousawi, F. Morlet-Savary, C. Dietlin, J. P. Fouassier, J. Lalevée, Copper (Photo)redox Catalyst for Radical Photopolymerization in Shadowed Areas and Access to Thick and Filled Samples, Macromol. 2017, 50(10), 3761.
  • [53] P. Garra, C. Dietlin, F. Morlet-Savary, F. Dumur, D. Gigmes, J. P. Fouassier, J. Lalevée, Photopolymerization processes of thick films and in shadow areas: a review for the access to composites Polym. Chem. 2017, 8, 7088.
  • [54] N. Ballard, J. M. Asua, Radical polymerization of acrylic monomers: An overview, Prog. Polym. Sci. 2018, 79, 40.
  • [55] Patent US 10131728B2, Acrylic syrup preparation method and acrylic syrup.
  • [56] Patent EP 2989132B1, Liquid (meth) acrylic syrup it's method of polymerization, use and molded article obtained thereof.
  • [57] Patent US 4141806A, Bulk photo polymerization process for esters of acrylic and methacrylic acids.
  • [58] S. S. Baek, S. J. Jang, S. W Lee, S. H. Hwang, Effect of Chemical Structure of Acrylate Monomer on the Transparent Acrylic Pressure Sensitive Adhesives for Optical Applications, Polym. Kor. 2014, 38(5), 682.
  • [59] S. S. Baek, S. J. Jang, S. H. Hwang, Preparation and adhesion performance of transparent acrylic pressure sensitive adhesives: effects of substituent structure of acrylate monomer, Int. J. Adhes. Adhes. 2016, 64, 72.
  • [60] S. S. Baek, S. H. Hwang, Preparation and adhesion performance of transparent acrylic pressure- sensitive adhesives containing menthyl acrylate, Polym. Bull. 2016, 73(3), 687.
  • [61] S. S. Baek, S. H. Hwang, Eco-friendly UV-curable pressure sensitive adhesives containing acryloyl derivatives of monosaccharides and their adhesive performances, Int. J. Adhes. Adhes. 2016, 70, 110.
  • [62] S. S. Baek, S. J. Jang, S. H. Hwang, Construction and adhesion performance of biomass tetrahydro-geraniol-based sustainable/transparent pressure sensitive adhesives, J. Ind. Eng. Chem. 2017, 53(25), 429.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b37479e4-57ab-4858-b2b6-da1641205102
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.