Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this research, thermodynamic and absorption rate of carbon dioxide in monoethanolamine (MEA) solution was investigated. A correlation based on both liquid and a gas phase variable for carbon dioxide absorption rate was presented using the π-Buckingham theorem. The correlation was constructed based on dimensionless numbers, including carbon dioxide loading, carbon dioxide partial pressure, film parameter and the ratio of liquid phase film thickness and gas phase film thickness. The film parameter is used to apply the effect of chemical reactions on absorption rate. A thermodynamic model based on the extended-UNIQUAC equations for the activity coefficients coupled with the Virial equation of state for representing the non-ideality of the vapor phase was used to predict the CO2 solubility in the CO2-MEA-H2O system. The average absolute error of the results for the correlation was 6.4%, which indicates the accuracy of the proposed correlation.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
75--82
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
- Iran University of Science and Technology, Department of Chemical, Oil and Gas Engineering, P.O. Box: 16765-163, Tehran, Iran
Bibliografia
- 1. Bougie, F. & Iliuta, M.C. (2011). CO2 Absorption in Aqueous Piperazine Solutions: Experimental Study and Modeling, J. Chem. Eng. 56, 1547–1554. DOI: 10.1021/je1012247.
- 2. Kohl, A.L. & Nielsen, R.B., Gas Purification, 5th ed., Gulf Publishing Co., Houston, U.S.A., 1997.
- 3. Charkravarty, T. & Phuken, U.K. (1985). Reaction of acid gases with mixtures of amines. Chem. Eng. Prog. 40, 32–36.
- 4. Pashaei, P., Nasiri, M. & Ghaemi, A. (2017). Experimental study and modeling of CO2 absorption into diethanolamine solutions using stirrer bubble column. Chem. Eng. Res. Design 121, 32–43. DOI: 10.1016/j.cherd.2017.03.001.
- 5. Norouzbahari, S., Shahhosseini, Sh. & Ghaemi, A. (2015). Modeling of CO2 loading in aqueous solutions of piperazine: Application of an enhanced artificial neural network algorithm. J. Nat. Gas Sci. Eng. 24, 18–25. DOI: 10.1016/j.jngse.2015.03.011.
- 6. Ghaemi, A., Shahhosseini, Sh. & Maragheh, MG. (2009). Nonequilibrium dynamic modeling of carbon dioxide absorption by partially carbonated ammonia solutions. Chem. Eng. J. 149 (1), 110–117. DOI: 10.1016/j.cej.2008.10.020.
- 7. Nwaoha, C., Saiwan, C., Tontiwachwuthikul, P. & Supap, T., Rongwong W., Idem R., AL-Marri M.J. & Benamor, A. (2016). Carbon dioxide capture: Absorption-desorption capabilities of 2-amino-2-methyl-1-propanol (AMP), piperazine (PZ) and monoethanolamine (MEA) tri-solvent blends. J. Nat. Gas Sci. Eng. 33, 742–750. DOI: 10.1016/j.jngse.2016.06.002.
- 8. Pal, P., Abu Kashabeh, A., Al-Asheh, S. & Banat, F. (2015). Role of aqueous methyldiethanolamine (MDEA) as solvent in natural gas sweetening unit and process contaminants with probable reaction pathway. J. Nat. Gas Sci. Eng. 24, 124–131. DOI: 10.1016/j.jngse.2015.03.007.
- 9. Qiu, K., Shang, J.F., Ozturk, M., Li, T.F., Chen, S.K., Zhang, L.Y. & Gu, X.H. (2014). Studies of methyldiethanolamine process simulation and parameters optimization for high-sulfur gas sweetening. J. Nat. Gas Sci. Eng. 21, 379–385. DOI: 10.1016/j.jngse.2014.08.023.
- 10. Øi, L.E. (2010). CO2 removal by absorption: challenges in modeling, Math Compu. Model. Dynamic Sys. 16, 511–33. DOI: 10.1080/13873954.2010.491676.
- 11. Boettinger, W., Maiwald, M. & Hasse, H. (2008). Online NMR spectroscopic study of species 626 distribution in MEA-CO2-H2O and DEA-H2O-CO2, Fluid Phase Equilibria. 263, 131–43. DOI: 10.1016/j.fluid.2007.09.017.
- 12. Pashaei, P., Ghaemi, A. & Nasiri, M. (2016). Modeling and experimental study on the solubility and mass transfer of CO2 into aqueous DEA solution using a stirrer bubble column. RSC Adv. 6, 108075–108092. DOI: 10.1039/C6RA22589F.
- 13. Notz, R., Mangalapally, H.P. & Hasse, H. (2012). Post combustion CO2 capture by reactive absorption: Pilot plant description and results of systematic studies with MEA. Int. J. Greenh. Gas Contr. 6, 84–112. DOI: 10.1016/j.ijggc.2011.11.004.
- 14. Lee, I.Y., Kwak, N.S., Lee, J.H., Jang, K.R. & Shim, J.G. (2013). Oxidative Degradation of Alkanolamines with Inhibitors in CO2 Capture Process. Energy Proced. 37, 1830–1835. DOI:10.1016/j.egypro.2013.06.061.
- 15. Luis, P. (2016). Use of monoethanolamine (MEA) for CO2 capture in a global scenario: Consequences and alternatives. Desalination 380, 93–99. DOI: 10.1016/j.desal.2015.08.004.
- 16. Freguia, S. & Rochelle, G.T. (2003). Modeling of CO2 Capture by Aqueous Monoethanolamine. AIChE J. 49, 1676–1686. DOI: 10.1002/aic.690490708.
- 17. Lv, B., Guo, B., Zhou, Z. & Jing, G. (2015). Mechanisms of CO2 Capture into Monoethanolamine Solution with Different CO2 Loading during the Absorption/Desorption Processes. Environ. Sci. Technol. 49, 10728–10735. DOI: 10.1021/acs.est.5b02356.
- 18. Xie, H.B., Zhou, Y.Z., Zhang, Y.K. & Johnson, J.K. (2010). Reaction mechanism of monoethanolamine with CO2 in aqueous solution from molecular modeling. J. Phys. Chem. A. 114, 11844–11852. DOI: 10.1021/jp107516k.
- 19. Wong, K., Bustam, M.A. & Shariff, A.M. (2016). In situ measurement of physical solubility of carbon dioxide in loaded aqueous monoethanolamine by Raman spectroscopy. J. Nat. Gas Sci. Eng. 36, 305–313. DOI: 10.1016/j.jngse.2016.10.029.
- 20. Han, B., Zhou, C.G., Wu, J.P., Tempel, D.J. & Cheng, H.S. (2011). Understanding CO2 capture mechanisms in aqueous monoethanolamine via first principles simulations. J. Physics Chem. Lett. 2, 522–526. DOI: 10.1021/jz200037s.
- 21. Etemad, E., Ghaemi, A. & Shirvani, M. (2015). Rigorous correlation for CO2 mass transfer flux in reactive absorption processes. Int. J. Greenh. Gas Cont. 42, 288–295. DOI: 10.1016/j.ijggc.2015.08.011.
- 22. Moioli, S. & Pellegrini, L.A. & Gamba, S. (2012). Simulation of CO2 capture by MEA scrubbing with a ratebased model. Procedia Eng. 42, 1800–1810. DOI: 10.1016/j.proeng.2012.07.558.
- 23. Rumpf, B. & Maurer, G. (1993). An Experimental and Theoretical Investigation on the Solubility of Carbon Dioxide in Aqueous Solutions of Strong Electrolytes. Ber. Bunsengesells. Physik. Chem. 97, 85–97. DOI: 10.1002/bbpc.19930970116.
- 24. Kent, R.L. & Eisenberg, B. (1976). Better Data for Amine Treating, 87–90.
- 25. Ghaemi, A., Torab-Mostaedi, M., Ghannadi Maragheh, M. & Shahhosseini, Sh. (2011). Kinetics and Absorption Rate of CO2 into Partially Carbonated Ammonia Solutions, Chem. Eng. Commun. 198, 1169–1181. DOI: 10.1080/00986445.2010.525204.
- 26. Saul, A. & Wagner, W. (1987). International Equations for the Saturation Properties of Ordinary Water Substance. J. Phys. Chem. 16, 893–901. DOI: 10.1063/1.555787.
- 27. Dymond, J.H. & Smith, E.B. The Virial Coefficients of Pure Gases and Mixtures, Oxford University Press: Oxford, UK, 1980.
- 28. Hayden, J.G. & O’Connell, J.P. (1975). A Generalized Method for Predicting Second Virial Coefficients. Ind. Engi. Chem. Proc. Design Develop. 14, 209–216. DOI: 10.1021/i260055a003.
- 29. Brelvi, S.W., O’Connell, J.P. (1972). Corresponding States Correlations for Liquid Compressibility and Partial Molal Volumes of Gases at Infinite Dilution in Liquids. AIChE J. 18, 1239–1243. DOI: 10.1002/aic.690180622.
- 30. Sander, B., Fredenslund, A. & Rasmussen, P. (1986) Calculation of Vapor-Liquid Equilibrium in Mixed Solvent/Salt Systems using an Extended UNIQUAC Equation, Chem. Eng. Sci. 41, 1171–1183. DOI: 10.1016/0009-2509(86)87090-7.
- 31. Thomsen, K. (2005). Modeling electrolyte solutions with the extended universal quasi chemical (UNIQUAC) model. Pure Appl. Chem. 77, 531–542. DOI: 10.1351/pac200577030531.
- 32. Aronu, U.E., Gondal, Sh., Hessen, E.T., Haug-Warberg, T., Hartono, A., Hoff, K.A. & Svendsen, H.F., (2011). Solubility of CO2 in 15, 30, 45 and 60 mass% MEA from 40 to 120°C and model representation using the extended UNIQUAC framework. Chem. Eng. Sci. 66, 6393–6406. DOI: 10.1016/j.ces.2011.08.042.
- 33. Dugass, R.E. (2009). Carbon Dioxide Absorption, Desorption, and Diffusion in Aqueous Piperazine and Monoethanolamine, PhD Dissertation, University of Texas at Austin.
- 34. Lagarias, J.C., Reeds, J.A., Wright, M.H. & Wright, P.E. (1998). Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J. Optim. 9, 112–147. DOI: 10.1137/S1052623496303470.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b36f3697-2c00-400a-95ba-8fb15f4b88ac