PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical simulation of elastic wave propagation in masonry compared with acoustic emission experimental results

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It has been shown in acoustic emission literature that the distance between a possible cracking event and a receiver is affecting the signal parameters providing a wrong image of the real fracture characteristics. In this study, lab-scale experimental tests on masonry components are performed in order to determine the disturbance of the acoustic emission wave properties and verify the experimental observations via numerical wave propagation analysis. The investigation is extended to different geometries including “couplets,” “triplets” and masonry walls. The simulations allow to understand, verify and predict the acoustic emission signal properties alterations in many different types of masonry experiments as well as the correct characterization of the fracture mode.
Rocznik
Strony
236--246
Opis fizyczny
Bibliogr. 31 poz., fot., rys., wykr.
Twórcy
  • Department Mechanics of Materials and Constructions (MEMC), Vrije Universiteit Brussel, Brussels, Belgium
autor
  • Building Materials and Building Technology Division, Civil Engineering Department, KU Leuven, Leuven, Belgium
  • Building Materials and Building Technology Division, Civil Engineering Department, KU Leuven, Leuven, Belgium
autor
  • Department of Materials Engineering, KU Leuven, Leuven, Belgium
  • Department Mechanics of Materials and Constructions (MEMC), Vrije Universiteit Brussel, Brussels, Belgium
  • Department Mechanics of Materials and Constructions (MEMC), Vrije Universiteit Brussel, Brussels, Belgium
Bibliografia
  • [1] Carpinteri A, Lacidogna G, Pugno N. Structural damage diagnosis and life-time assessment by acoustic emission monitoring. Eng Fract Mech. 2007;74(1–2):273–89.
  • [2] Wevers M. Listening to the sound of materials: Acoustic emission for the analysis of material behaviour. NDT E Int. 1997;30(2):99–106. https ://doi.org/10.1016/S0963 -8695(96)00051 -5.
  • [3] Verstrynge E, Schueremans L, Van Gemert D, Wevers M. Monitoring and predicting masonry’s creep failure with the acoustic emission technique. NDT E Int. 2009;42(6):518–23. https ://doi.org/10.1016/j.ndtei nt.2009.03.001.
  • [4] Kravchuk R, Landis EN. Acoustic emission-based classification of energy dissipation mechanisms during fracture of fiber-reinforced ultra-high-performance concrete. Constr Build Mater. 2018;176:531–8. https ://doi.org/10.1016/j.conbu iloma t.2018.05.039.
  • [5] Shiotani T, Ohtsu M, Ikeda K. Detection and evaluation of AE waves due to rock deformation. Constr Build Mater. 2001;15(5–6):235–46. https ://doi.org/10.1016/S0950 -0618(00)00073 -8.
  • [6] Recommendation of RILEM TC 212-ACD: acoustic emission and related NDE techniques for crack detection and damage evaluation in concrete. Test method for classification of active cracks in concrete structures by acoustic emission RILEM Technical Committee. Mater Struct. 2010;43(9):1187–9. https ://doi.org/10.1617/s1152 7-010-9640-6.
  • [7] Goszczyńska B, Świt G, Trąmpczyński W, Krampikowska A, Tworzewska J, Tworzewski P. Experimental validation of concrete crack identification and location with acoustic emission method. Arch Civ Mech Eng. 2012;12(1):23–8. https ://doi.org/10.1016/j.acme.2012.03.004.
  • [8] Ohno K, Ohtsu M. Crack classification in concrete based on acoustic emission. Constr Build Mater. 2010;24(12):2339–46. https ://doi.org/10.1016/j.conbu ildma t.2010.05.004.
  • [9] Farhidzadeh A, Salamone S, Singla P. A probabilistic approach for damage identification and crack mode classification in reinforced concrete structures. J Intell Mater Syst Struct. 2013;24(14):1722–35.
  • [10] Kourkoulis SK, Dakanali I. Pre-failure indicators detected by acoustic emission: Alfas stone, cement-mortar and cement-paste specimens under 3-point bending. Frattura ed Integritŕ Strutturale. 2017;11(40):74–84.
  • [11] Mpalaskas AC, Matikas TE, Van Hemelrijck D, Papakitsos GS, Aggelis DG. Acoustic emission monitoring of granite under bending and shear loading. Arch Civ Mech Eng. 2016;16(3):313–24. https ://doi.org/10.1016/j.acme.2016.01.006.
  • [12] Livitsanos G, Shetty N, Hündgen D, Verstrynge E, Wevers M, Van Hemelrijck D, Aggelis DG. Acoustic emission characteristics of fracture modes in masonry materials. Constr Build Mater. 2018;162:914–22. https ://doi.org/10.1016/j.conbu iloma t.2018.01.066.
  • [13] Aggelis DG, Shiotani T, Papacharalampopoulos A, Polyzos D. The influence of propagation path on elastic waves as measured by acoustic emission parameters. Struct Health Monit. 2012;11(3):359–66.
  • [14] Ohtsu M. Innovative AE and NDT techniques for on-site measurement of concrete and masonry structures. RILEM State Art Rep. 2016;20:89–103.
  • [15] Aggelis DG, Matikas TE. Effect of plate wave dispersion on the acoustic emission parameters in metals. Comput Struct. 2012;98–99:17–22. https ://doi.org/10.1016/j.comps truc.2012.01.014.
  • [16] Ohtsu M, Ono K. The generalized theory and source representations of acoustic emission. J Acoust Emiss. 1986;5(4):124–33.
  • [17] Rhian Green E. Acoustic emission in composite laminates. J Nondestruct Eval. 1998;17(3):117–27. https: //doi.org/10.1007/BF024 46115 .
  • [18] Sause MGR, Horn S. Simulation of acoustic emission in planar carbon fiber reinforced plastic specimens. J Nondestr Eval. 2010;29(2):123–42. https ://doi.org/10.1007/s1092 1-010-0071-7.
  • [19] Brigante M. Calculation of wave structure of the ultrasonic beams in nondestructive testing of brick masonries. Mech Res Commun. 2014;59:58–63. https ://doi.org/10.1016/j.mechr escom .2014.04.005.
  • [20] De Santis S, Tomor AK. Laboratory and field studies on the use of acoustic emission for masonry bridges. NDT E Int. 2013;55:64–74. https ://doi.org/10.1016/j.ndtei nt.2013.01.006.
  • [21] Livitsanos G, Shetty N, Verstrynge E, Wevers M, Van Hemelrijck D, Aggelis DG. Characterization of fracture mode in historicalmasonry mortars by acoustic emission. In: 2nd International RILEM/COST conference on early age cracking and serviceability in cement-based materials and structures; 2017. p. 125–30.
  • [22] Livitsanos G, Shetty N, Verstrynge E, Wevers M, Van Hemelrijck D, Aggelis DG. NDT fracture mode characterization in masonry components made with different mortars. In: Proceedings of the structural faults and repair 2018; 2018. https ://doi.org/10.25084 /sfr.2018.0031.
  • [23] Singh S, Munjal P. Bond strength and compressive stress–strain characteristics of brick masonry. J Build Eng. 2017;9:10–6. https ://doi.org/10.1016/j.jobe.2016.11.006.
  • [24] Alecci V, Fagone M, Rotunno T, De Stefano M. Shear strength of brick masonry walls assembled with different types of mortar. Constr Build Mater. 2013;40:1038–45. https ://doi.org/10.1016/j.conbu ildma t.2012.11.107.
  • [25] Mojsilović N, Simundic G, Page AW. Static-cyclic shear tests on masonry triplets with a damp-proof course membrane. In: Proceedings of the 12 th Canadian masonry symposium. Vancouver; 2013.
  • [26] Hendrickx R. The adequate measurement of the workability of masonry mortar, PhD Thesis, KU Leuven, Civil Engineering Department; 2009.
  • [27] Mistras Group Inc. “AEwin Software”, products & systems division. NY: Princeton Junction; 2009.
  • [28] Shiotani T. Parameter analysis. In: Grosse C, Ohtsu M, editors. Acoustic emission testing. Berlin: Springer; 2008. p. 41–51. https ://doi.org/10.1007/978-3-540-69972 -9_4.
  • [29] Wave2000. NY: Cyber-Logic, Inc. http://www.cyber logic .org.
  • [30] Moser F, Jacobs LJ, Qu J. Modeling elastic wave propagation in waveguides with the finite element method. NDT E Int. 1999;32(4):225–34.
  • [31] Shetty N, Livitsanos G, Aggelis DG, Van Hemelrijck D, Wevers M, Verstrynge E. Acoustic emission characterization of fracture modes in masonry under direct shear test. In: 24th International acoustic emission symposium (IAES), 5–9 November 2018, Sapporo, Japan; 2018.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b36ca40a-bbf8-443e-83b7-3e8dab2c0b89
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.