PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Studies of mechanical and technological parameters and evaluation of the role of lustrous carbon carriers in green moulding sands with hybrid bentonite

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Green moulding sands containing special carbonaceous additives, which are the source of lustrous carbon (LC), are discussed in this paper. Five potential lustrous carbon carriers, i.e., two types of hard coal dust (No.1 and No.2), amorphous graphite (No.3) and two hydrocarbon resins (No.4 and No.5), were selected for tests as carbonaceous additives to conventional moulding sands. To better emphasize the differences in the additives used, reference green moulding sand (GMS1) was prepared and subjected to a wide range of basic tests focussed on technological parameters, such as permeability (Pw), friability (Fw), Dietert mouldability test (PD) and compactability (Z) and mechanical parameters, such as compressive strength (Rcw), tensile strength (Rmw), strength in the transformation zone (Rkw). The proposed comprehensive spectrum of tests was repeated on sands with five carbonaceous additives. The most important for the use of additives as carbon carriers was to interrelate the content of lustrous carbon (LC), loss on ignition (LOI) and the obtained results of mechanical and technological tests carried out on conventional moulding sands with the surface quality of iron castings. For this purpose, a series of iron castings was made in the prepared moulding sands and used for the assessment of surface quality based on a number of roughness parameters (Ra, Rz, Rp, Rq, Rv, Rlr, RSm). As a result of the studies it was found that the carbonaceous additives proposed for use help to obtain high-quality surfaces in iron castings.
Rocznik
Strony
art. no. e11, 2023
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • ŁUKASIEWICZ-Krakow Institute of Technology, Zakopiańska 73, 30‑418 Cracow, Poland
  • Department of Lightweight Elements Engineering, Foundry and Automation, Wrocław University of Technology, Smoluchowskiego 25, 50‑370 Wrocław, Poland
autor
  • ŁUKASIEWICZ-Krakow Institute of Technology, Zakopiańska 73, 30‑418 Cracow, Poland
  • ŁUKASIEWICZ-Krakow Institute of Technology, Zakopiańska 73, 30‑418 Cracow, Poland
Bibliografia
  • 1. Boylu F. Optimization of foundry sand characteristics of soda-activated calcium bentonite. Appl Clay Sci. 2011. https://doi.org/10.1016/j.clay.2011.02.005.
  • 2. Beňo J, Lichy P, Kroupova I, Radkovsky F. Influencing of foundry bentonite mixtures by binder activation. Metalurgija/Metallurgy. 2016;55:7-10.
  • 3. Kamińska J, Puzio S, Angrecki M. Effect of bentonite clay addition on the thermal and mechanical properties of conventional moulding sands. Arch Foundry Eng. 2020. https://doi.org/10.24425/afe.2020.131291.
  • 4. Jelinek P, Dobosz S, Beno J, Major-Gabryś K. Thermostability of montmorillonitic clays. China Foundry. 2014;11:201-7.
  • 5. Grabowska B, Holtzer M, Kot I, Kwaśniewska-Krolikowska D. Spectrophotometry application for the montmorillonite content determination in moulding sands with bentonite. Metall Foundry Eng. 2011;37:73-9.
  • 6. Campbell J. Complete casting handbook: metal casting processes. Metallurgy. Techniques and design. Oxford: Butterworth-Heinemann; 2015.
  • 7. Campbell J, Naro RL. Lustrous carbon in grey iron. AFS Trans. 2010;114:10-36.
  • 8. Naro RL. Formation and control of lustrous carbon surface defects in iron and steel castings. Trans Am Foundrymen’s Soc. 2002;1:815-34.
  • 9. Kamińska J, Puzio S, Angrecki M, Stachowicz M. The effect of the addition of bentonite clay to traditional sand mixtures on the surface quality of iron castings. J Ecol Eng. 2020. https://doi.org/10.12911/22998993/112505.
  • 10. Said RM, Kamal MRM, Miswan NH, Ng SJ. Optimization of moulding composition for quality improvement of sand casting. J Adv Manuf Technol. 2018;12:301-10.
  • 11. Michta-Stawiarska T. Difficulties in stabilization of conventional sand mixes. Krzepnięcie Metali i Stopow. 1998;35:9-13 (in Polish).
  • 12. Bobrowski A, Holtzer M. Assessment of environmental influence of bentonite and lustrous carbon carrier-in an aspect of gases emission. Arch Foundry Eng. 2009;9:21-4.
  • 13. Holtzer M, Bobrowski A, Grabowska B, Eichholz S, Hodorc K. Investigation of carriers of lustrous carbon at high temperatures by infrared spectroscopy (FTIR). Arch Foundry Eng. 2010;10:61-8.
  • 14. Holtzer M, Żymankowska-Kumon S, Kubecki M, Kwaśniewska-Krolikowska D. Harmfulness assessment of resins used as lustrous carbon carriers in bentonite moulding sands. Arch Metall Mater. 2013. https://doi.org/10.2478/amm-2013-0078.
  • 15. Zielinski J, Polaczek J, Dobrzynska D, Zielinski T, Dubrawski S, Machowska Z. Hydrocarbon resin/polymer blends as precursors of lustrous carbon. Polimery. 2005;50:216-8.
  • 16. Kwaśniewska-Krolikowska D, Holtzer M. Selection criteria of lustrous carbon carriers in the aspect of properties of greensand system. Metalurgija/Metallurgy. 2013;52:62-4.
  • 17. Wang Y, Huang H, Cannon FS, Voigt RC, Komarneni S, Furness JC. Evaluation of volatile hydrocarbon emission characteristics of carbonaceous additives in green sand foundries. Environ Sci Technol. 2007. https://doi.org/10.1021/es0628295.
  • 18. Wang Y, Cannon FS, Li X. Comparative analysis of hazardous air pollutant emissions of casting materials measured in analytical pyrolysis and conventional metal pouring emission tests. Environ Sci Technol. 2011. https://doi.org/10.1021/es202 3048.
  • 19. Knecht U, Elliehausen HJ, Woitowitz HJ. Gaseous and adsorbed PAH in an iron foundry. Occup Environ Med. 1986;43:834-8.
  • 20. Dungan RS. Headspace solid-phase microextraction (HS-SPME) for the determination of benzene. Toluene. Ethylbenzene and xylenes (BTEX) in foundry moulding sand. Anal Lett. 2005;38:2393-405.
  • 21. Holtzer M, Grabowska B, Zymankowska-Kumon S, Kwasniewska-Krolikowska D, Dańko R, Solarski W, Bobrowski A. Harmfulness of moulding sands with bentonite and lustrous carbon carriers. Metalurgija/Metallurgy. 2012;51:437-40.
  • 22. Kamińska J, Stachowicz M, Kubecki M. Research on selected types of lustrous carbon carriers after the high-temperature pyrolysis. Arch Foundry Eng. 2021. https://doi.org/10.24425/afe.2021.136078.
  • 23. Engelhardt T. New concepts to reduce the emission from green sand. Fonderie Magazine/Przegląd Odlewnictwa. 2010;7:24-36 (in Polish).
  • 24. Richardson N, LaFay V. Why iron castings need sea coal. Foundry Trade J. 2014;188:351-5.
  • 25. Holtzer M, Kmita A, Roczniak A. Processes of pyrolysis and their effect on cast quality and working conditions. J Appl Mater. 2016. https://doi.org/10.7356/iod.2016.13.
  • 26. Pribulova A, Futaš P, Rosova A, Demeter P, Baricova D. Influence of foundry dust on moulding mixtures quality. Metalurgija. 2013;52:51-4.
  • 27. Orlenius J. Factors related to the formation of gas porosity in grey cast iron: investigation of core gas evolution and gas concentrations in molten iron. Research Series from Chalmers University of Technology. Licentiate Theses. 2008.
  • 28. Kamińska J, Marcinkowski A, Dąbek P. Influence of the maturing time on properties of bentonite moulding sands on the reclaimed material matrix. Fonderie Magazine/Przegląd Odlewnictwa. 2015;65:384-9.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b36722b1-bd58-4912-b7f6-37f2026eaaea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.