PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Optimising biosynthesis of antimicrobial copper nanoparticles using aqueous Aegle marmelos leaf extract-based medium

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Copper oxide nanostructures have garnered significant attention in nanotechnology for their diverse applications. This study presents a green synthesis approach using an aqueous Aegle marmelos leaf extract-based medium to produce copper oxide (Cu4O3) nanoparticles. Optimisation was achieved through a simplified Taguchi L9 orthogonal array, investigating critical parameters such as temperature, surfactants (AOT and Tween 80), and additives (ascorbic acid and chitosan). Under optimised conditions (AOT: 0.0012 mM, ascorbic acid: 10 mM, chitosan: 1 %, temperature: 80 °C), near-spherical nanoparticles of ~200 nm were obtained. Comprehensive characterisation through UV-Vis, DLS, electron microscopy, XRD, and FTIR spectroscopy confirmed the nanoparticles’ properties, while antibacterial assays showed promising results against Escherichia coli bacteria.
Rocznik
Strony
7--17
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
  • Department of Biotechnology, Centre for Interfaces & Nanomaterials, C/O Research Park, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai-600062, India
  • Department of Biotechnology, Centre for Interfaces & Nanomaterials, C/O Research Park, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai-600062, India
  • Department of Biotechnology, Centre for Interfaces & Nanomaterials, C/O Research Park, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai-600062, India
  • Department of Biotechnology, Centre for Interfaces & Nanomaterials, C/O Research Park, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai-600062, India
  • Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 46117, Liberec 1, Czech Republic
  • Amrita School for Sustainable Futures (ASF), Amrita Vishwa Vidyapeetham, Amrita University, Amritapuri, Kollam, Kerala, India
  • Department of Biotechnology, Centre for Interfaces & Nanomaterials, C/O Research Park, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai-600062, India
  • Amrita School for Sustainable Futures (ASF), Amrita Vishwa Vidyapeetham, Amrita University, Amritapuri, Kollam, Kerala, India
Bibliografia
  • [1] Talebpour F, Ghahghaei A. Effect of green synthesis of gold nanoparticles (AuNPs) from Hibiscus sabdariffa on the aggregation of α-lactalbumin. Int J Pept Res Ther. 2020;26(4):2297-306. DOI: 10.1007/s10989-020-10023-9.
  • [2] Kamala Nalini SP, Vijayaraghavan K. Green synthesis of silver and gold nanoparticles using aloe vera gel and determining its antimicrobial properties on nanoparticle impregnated cotton fabric. J Nanotechnol Res. 2020;2(3):42-50. Available from: https://www.fortunejournals.com/articles/greensynthesis-of-silver-and-gold-nanoparticles-using-aloe-vera-gel-and-determining-its-antimicrobial-propertieson-nanoparticle-.html.
  • [3] Ansari N, Lodha A, Patel TL. A novel microwave-assisted green synthesis of copper nanoparticles using Citrus limon and its application for antibacterial and antifungal activity. Int J Nanosci. 2022;21(3):2250016. DOI: 10.1142/S0219581X22500168.
  • [4] Mohan VR, Doss A, Tresina PS, Beulah GGP, Juliet MR. Biogenic synthesis of copper nanoparticles using aquatic pteridophyte Marsilea quadrifolia Linn. rhizome and its antibacterial activity. Int J Nano Dimension. 2020;11(4):337-45. Available from: https://journals.iau.ir/article_674921.html.
  • [5] Umer A, Naveed S, Ramzan N, Rafique MS, Imran M. A green method for the synthesis of copper nanoparticles using L-ascorbic acid. Matéria. 2014;19(3):197-203. DOI: 10.1590/S1517-70762014000300002.
  • [6] Naz S, Gul A, Zia M. Toxicity of copper oxide nanoparticles: a review study. IET Nanobiotechnol. 2019;14(1):1-13. DOI: 10.1049/iet-nbt.2019.0176.
  • [7] Sharma D, Kanchi S, Bisetty K. Biogenic synthesis of nanoparticles: A review. Arabian J Chem. 2019;12(8):3576-600. DOI: 10.1016/j.arabjc.2015.11.002.
  • [8] Md. Islam J, Khatun MT, Md. Rahman R, Alam MM. Green synthesis of copper oxide nanoparticles using Justicia adhatoda leaf extract and its application in cotton fibers as antibacterial coatings. AIP Adv. 2021;11(12):125223. DOI: 10.1063/5.0076941.
  • [9] Kiriyanthan RM, Sharmili SA, Balaji R, Jayashree S, Mahboob S, Al-Ghanim KA, et al. Photocatalytic, antiproliferative and antimicrobial properties of copper nanoparticles synthesized using Manilkara zapota leaf extract: A photodynamic approach. Photodiagnosis Photodyn Ther. 2020;32:102058. DOI: 10.1016/j.pdpdt.2020.102058.
  • [10] Hemmati S, Ahmeda A, Salehabadi Y, Zangeneh A, Zangeneh MM. Synthesis, characterization, and evaluation of cytotoxicity, antioxidant, antifungal, antibacterial, and cutaneous wound healing effects of copper nanoparticles using the aqueous extract of strawberry fruit and l-ascorbic acid. Polyhedron. 2020;144:25180. DOI: 10.1016/j.poly.2020.114425.
  • [11] Liu H, Zheng S, Xiong H, Alwahibi MS, Niu X. Biosynthesis of copperoxide nanoparticles using Abies spectabilis plant extract and analyzing its antinociceptive and anti-inflammatory potency in various mice models. Arabian J Chem. 2020;139:6995-7006. DOI: 10.1016/j.arabjc.2020.07.006.
  • [12] Das P, Ghosh S, Ghosh R, Dam S, Baskey M. Madhuca longifolia plant mediated green synthesis of cupric oxide nanoparticles: A promising environmentally sustainable material for waste water treatment and efficient antibacterial agent. J Photochem Photobiol B: Biology. 2018;189:66-73. DOI: 10.1016/j.jphotobiol.2018.09.023.
  • [13] Mali SC, Dhaka A, Githala CK, Trivedi R. Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties. Biotechnol Rep (Amst). 2020;27:e00518. DOI: 10.1016/j.btre.2020.e00518.
  • [14] Dankovich TA, Smith JA. Incorporation of copper nanoparticles into paper for point-of-use water purification. Water Res. 2014;63:245-51. DOI: 10.1016/j.watres.2014.06.022.
  • [15] Rao KJ, Paria S. Phytochemicals mediated synthesis of multifunctional Ag-Au-TiO2 heterostructure for photocatalytic and antimicrobial applications. J Cleaner Prod. 2017;165:360-8. DOI: 10.1016/j.jclepro.2017.07.147.
  • [16] Rao KJ, Paria S. Mixed phytochemicals mediated synthesis of multifunctional Ag-Au-Pd nanoparticles for glucose oxidation and antimicrobial applications. ACS Appl Mater Interfaces. 2015;7(25):14018-25. DOI: 10.1021/acsami.5b03089.
  • [17] Rao KJ, Paria S. Aegle marmelos leaf extract and plant surfactants mediated green synthesis of Au and Ag nanoparticles by optimizing process parameters using Taguchi method. ACS Sust Chem Eng. 2015. DOI: 10.1021/acssuschemeng.5b00022.
  • [18] Akyalcin S, Akyalcin L, Bjørgen M. Optimization of desilication parameters of low-silica ZSM-12 by Taguchi method. Microporous Mesoporous Materials. 2019;273:256-64. DOI: 10.1016/j.micromeso.2018.07.014.
  • [19] Rao KJ, Korumilli T, Jakkala S, Singh K, Vidya K. Optimization of the one-step green synthesis of silver and gold nanoparticles using aqueous Athyrium filix femina extract using the Taguchi method. BioNanoScience. 2021;11(4):915-22. DOI: 10.1007/s12668-021-00909-3.
  • [20] Rao KJ, Paria S. Green synthesis of silver nanoparticles from aqueous Aegle marmelos leaf extract. Materials Res Bull. 2013;48(2):628-34. DOI: 10.1016/j.materresbull.2012.11.035.
  • [21] Rao KJ, Paria S. Green synthesis of gold nanoparticles using aqueous Aegle marmelos leaf extract and its application for thiamine detection. RSC Adv. 2014; 28645-52. DOI: 10.1039/C4RA03883E.
  • [22] Othumpangat S, Fedan JS. Oil spills. In: Reference Module in Biomedical Sciences, Elsevier. 2022. DOI: 10.1016/B978-0-12-824315-2.00166-4.
  • [23] Phan TTV, Hoang G, Nguyen VT, Nguyen TP, Kim HH, Mondal S, et al. Chitosan as a stabilizer and size-control agent for synthesis of porous flower-shaped palladium nanoparticles and their applications on photo-based therapies. Carbohydrate Polymers. 2019;205:340-52. DOI: 10.1016/j.carbpol.2018.10.062.
  • [24] Dang TMD, Le TTT, Fribourg-Blanc E, Dang MC. The influence of solvents and surfactants on the preparation of copper nanoparticles by a chemical reduction method. Adv Nat Sci: Nanosci Nanotechnol. 2011;2(2):025004. DOI: 10.1088/2043-6262/2/2/025004.
  • [25] Takemura K. Surface plasmon resonance (SPR)- and localized SPR (LSPR)-based virus sensing systems: optical vibration of nano- and micro-metallic materials for the development of next-generation virus detection technology. Biosensors. 2021;11(8):8. DOI: 10.3390/bios11080250.
  • [26] Singh KG, Singh G, Kang TS. Aggregation behavior of sodium dioctyl sulfosuccinate in deep eutectic solvents and their mixtures with water: An account of solvent’s polarity, cohesiveness, and solvent structure. ACS Omega. 2018;3(10):13387-98. DOI: 10.1021/acsomega.8b01637.
  • [27] Nocelli NE, de las Zulueta Díaz YM, Millot M, Colazo ML, Vico RV, Fanani ML. Self-assembled nanostructures of L-ascorbic acid alkyl esters support monomeric amphotericin B. Heliyon. 2021;7(1):e06056. DOI: 10.1016/j.heliyon.2021.e06056.
  • [28] Thanuja J, Udayabhanu, Nagaraju G, Naika HR. Biosynthesis of Cu4O3 nanoparticles using Razma seeds: application to antibacterial and cytotoxicity activities. SN Appl Sci. 2019;1(12):1646. DOI: 10.1007/s42452-019-1556-3.
  • [29] Ali MAE, Aboelfadl MMS, Selim AM, Khalil HF, Elkady GM. Chitosan nanoparticles extracted from shrimp shells, application for removal of Fe(II) and Mn(II) from aqueous phases. Separation Sci Technol. 2018;53(18):2870-81. DOI: 10.1080/01496395.2018.1489845.
  • [30] Drabczyk A, Kudłacik-Kramarczyk S, Głąb M, Kędzierska M, Jaromin A, Mierzwiński D, et al. Physicochemical investigations of chitosan-based hydrogels containing Aloe vera designed for biomedical use. Materials. 2020;13(14):3073. DOI: 10.3390/ma13143073.
  • [31] Machodi MJ, Daramol MO. Synthesis and performance evaluation of PES/chitosan membranes coated with polyamide for acid mine drainage treatment. Sci Rep. 2019;9(1):1. DOI: 10.1038/s41598-019-53512-8.
  • [32] Sionkowska A, Kaczmarek B, Lewandowska K. Characterisation of chitosan after cross-linking by tannic acid. PCACD. 2014;19(1);135-8. DOI: 10.15259/PCACD.19.16.
  • [33] Mittapally S, Taranum R, Parveen S. Metal ions as antibacterial agents. J Drug Delivery Ther. 2018;8(6):411-9. DOI: 10.22270/jddt.v8i6-s.2063.
  • [34] Mohammadi Ziarani G, Khademi M, Mohajer F, Badiei A, Varma RS. The synthesis of 2,2-bis(1-indol-3-yl)acenaphthylene-1(2)-ones using nanocatalysis: Fluorescent sensing for Cu2+ ions. Ecol Chem Eng S. 2022;29(4):463-75. DOI: 10.2478/eces-2022-0033.
  • [35] Narath S, Shankar SS, Sivan SK, George B, Thomas TD, Sabarinath S, et al. Facile green synthesis of Cinnamomum tamala extract capped silver nanoparticles and its biological applications. Ecol Chem Eng S. 2023;30(1):7-21. DOI: 10.2478/eces-2023-0001.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b35dcda2-94d2-49a5-b163-67f34e0bcdd3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.