PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Implementation of the LQG controller for a wind turbine tower-nacelle model with an mr tuned vibration absorber

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Vibration of a wind turbine tower is related to fatigue wear, influencing reliability of the whole structure. The current paper deals with the problem of Linear-Quadratic-Gaussian (LQG) tower vibration control using specially designed and built simulation and laboratory tower-nacelle models with a horizontally aligned, magnetorheological (MR) damper based tuned vibration absorber located at the nacelle. Force excitation applied horizontally to the tower itself, or to the nacelle, is considered. The MR damper LQG control algorithm, including the Kalman state observer and LQR (Linear-Quadratic-Regulator) controller is analysed numerically and implemented on the laboratory ground, in comparison with the system with a deactivated absorber. Simulation and experimental results are presented.
Rocznik
Strony
1109--1123
Opis fizyczny
Bibliogr. 42 poz., rys.
Twórcy
autor
  • AGH University of Science and Technology, Department of Automatics and Biomedical Engineering, Cracow, Poland
  • AGH University of Science and Technology, Department of Process Control, Cracow, Poland
Bibliografia
  • 1. Asai T., Spencer Jr. B.F., 2014, Model-free algorithms for seismic response control employing controllable dampers, Proceedings of the VI World Conference on Structural Control and Monitoring, Barcelona
  • 2. Asai T., Spencer Jr. B.F., Iemura H., Chang C.-M., 2013, Nature of seismic control force in acceleration feedback, Structural Control and Health Monitoring, 20, 789-803
  • 3. Athans M., 1971, The role and use of the stochastic linear-quadratic-Gaussian problem in control system design, IEEE Transaction on Automatic Control, 16, 6, 529-552
  • 4. Bak C., Bitsche R., Yde A., Kim T., Hansen M.H., Zahle F., Gaunaa M., Blasques J., Dossing M., Wedel-Heinen J-J., Behrens T., 2012, Light rotor: the 10-MW reference wind turbine, European Wind Energy Association Annual Event, 16-19.04, Copenhagen, Denmark
  • 5. Butt U.A., Ishihara T., 2012, Seismic load evaluation of wind turbine support structures considering low structural damping and soil structure interaction, European Wind Energy Association Annual Event, 16-19.04, Copenhagen, Denmark
  • 6. COMSOL AB, 2008, COMSOL Multiphysics MATLAB Interface Guide, COMSOL Version 3.5a, November
  • 7. Den Hartog J.P., 1985, Mechanical Vibrations, Dover Publications, Mineola, NY
  • 8. Dyke S.J., Spencer Jr. B.F., Sain M.K., Carlson J.D., 1996a, A new semi-active control device for seismic response reduction, Proceedings of the 11th ASCE Engineering Mechanics Specialty Conference, 886-889
  • 9. Dyke S.J., Spencer Jr. B.F., Sain M.K., Carlson J.D., 1996b, Modeling and control of magnetorheological dampers for seismic response reduction, Smart Materials and Structures, 5, 5, 565-575
  • 10. Enevoldsen I., Mork K.J., 1996, Effects of vibration mass damper in a wind turbine tower, Mechanics of Structures and Machines, 24, 2, 155-187
  • 11. Favoreel W., De Moor B., Gevers M., Van Overschee P., 1999, Closed loop model- -free subspace-based LQG-design, Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99), Haifa, Israel, 1926-1939
  • 12. Hansen M.H., Fuglsang P., Thomsen K., Knudsen T., 2012, Two methods for estimating aeroelastic damping of operational wind turbine modes from experiments, European Wind Energy Association Annual Event, 16-19.04, Copenhagen, Denmark
  • 13. Hjalmarsson H., Gevers M., Gunnarsson S., Lequin O., 1998, Iterative feedback tuning: theory and applications, IEEE Control Systems Magazine, 18, 26-4.
  • 14. Jain P., 2011, Wind Energy Engineering, McGraw-Hill
  • 15. Jelavić M., Perić N., Petrović I., 2007, Damping of wind turbine tower oscillations through rotor speed control, EVER Conference 2007, March 29-April 1, Monaco
  • 16. Kawamura Y., 1998, Direct construction of LQ regulator based on orthogonalization of signals: Dynamical output feedback, Systems and Control Letters, 34, 1-9
  • 17. Kciuk S., Martynowicz P., 2011, Special application magnetorheological valve numerical and experimental analysis, [In:] Diffusion and Defect Data – Solid State Data. Pt. B, Solid State Phenomena, Vol. 177: Control Engineering in Materials Processing, 102-115
  • 18. Kirkegaard P.H. et al., 2002, Semiactive vibration control of a wind turbine tower using an MR damper, Structural Dynamics EURODYN 2001, H. Grundmann (Edit.), CRC Press
  • 19. Koo J.H., Ahmadian M., 2007, Qualitative analysis of magneto-rheological tuned vibration absorbers: experimental approach, Journal of Intelligent Material Systems and Structures, 18
  • 20. Łatas W., Martynowicz P., 2012, Modelling of vibration of the tower-nacelle system of a wind power plant with a dynamic damper (in Polish), Modelowanie Inżynierskie, 13, 44, 187-198
  • 21. Ljung L., 2015, System Identification ToolboxTM. User’s Guide, MATLAB&Simulink R2015a, The MathWorks Inc., USA
  • 22. Lord Rheonetic, 2002, MR Controllable Friction Damper RD-1097-01 Product Bulletin
  • 23. Martynowicz P., 2014a, Development of laboratory model of wind turbine’s tower-nacelle system with magnetorheological tuned vibration absorber, Solid State Phenomena, 208, 40-51
  • 24. Martynowicz P., 2014b, Wind turbine’s tower-nacelle model with magnetorheological tuned vibration absorber – numerical and experimental analysis, 6WCSCM: Proceedings of the 6th Edition of the World Conference of the International Association for Structural Control and Monitoirng (IACSM), 15-17.07, Barcelona, Spain
  • 25. Martynowicz P., 2015, Vibration control of wind turbine tower-nacelle model with magnetorheological tuned vibration absorber, Journal of Vibration and Control, doi: 10.1177/1077546315591445
  • 26. Martynowicz P., 2016, Study of vibration control using laboratory test rig of wind turbine tower- -nacelle system with MR damper based tuned vibration absorber, Bulletin of the Polish Academy of Sciences Technical Sciences, 64, 2, 347359
  • 27. Martynowicz P., Szydło Z., 2013, Wind turbine’s tower-nacelle model with magnetorheological tuned vibration absorber: the laboratory test rig, Proceedings of the 14th International Carpathian Control Conference (ICCC), 26-29.05, Rytro, Poland
  • 28. Matachowski F., Martynowicz P., 2012, Analysis of dynamics of a wind power plant by making use of Comsol Multiphysics environment (in Polish), Modelowanie Inżynierskie, 13, 44, 209-216
  • 29. Namik H., and Stol K., 2011, Performance analysis of individual blade pitch control of offshore wind turbines on two floating platforms, Mechatronics, 21, 691-703
  • 30. Oh S., Ishihara T., 2013, A study on structure parameters of an offshore wind turbine by excitation test using active mass damper, EWEA Offshore, 19-21.11, Frankfurt
  • 31. Rotea M.A., Lackner M.A., Saheba R., 2010, Active structural control of offshore wind turbines, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 4-7.01, Orlando, Florida
  • 32. Sapiński B., Martynowicz P., 2005, Vibration control in a pitch-plane suspension model with MR shock absorbers, Journal of Theoretical and Applied Mechanics, 43, 3.
  • 33. Sapiński B., Rosół M., 2007, MR damper performance for shock isolation, Journal of Theoretical and Applied Mechanics, 45, 1, 133-146
  • 34. Sapiński B., Rosół M., 2008, Autonomous control system for a 3 DOF pitch-plane suspension model with MR shock absorbers, Computers and Structures, 86, 3/5, 379-385
  • 35. Shan W., Shan M., 2012, Gain scheduling pitch control design for active tower damping and 3p harmonic reduction, European Wind Energy Association Annual Event, 16-19.04, Copenhagen, Denmark
  • 36. Singhal T., Harit Akshat, Vishwakarma D.N., 2012, Kalman filter implementation on an accelerometer sensor data for three state estimation of a dynamic system, International Journal of Research in Engineering and Technology, 1, 6, ISSN 2277-4378
  • 37. Snamina J., Martynowicz P., 2014,Prediction of characteristics of wind turbine’s tower-nacelle system from investigation of its scaled model, 6WCSCM: Proceedings of the 6th Edition of the World Conference of the International Association for Structural Control and Monitoirng (IACSM), 15-17.07, Barcelona, Spain
  • 38. Snamina J., Martynowicz P., Łatas W., 2014, Dynamic similarity of wind turbine’s Tower- -nacelle system and its scaled model, Solid State Phenomena, 208, 29-39
  • 39. Snamina J., Sapiński B., 2011, Energy balance in self-powered MR damper-based vibration reduction system, Bulletin of the Polish Academy of Sciences Technical Sciences, 59, 1, 75-80
  • 40. TMS, 2010, 60 Lbf Modal Shaker, The Modal Shop Inc.
  • 41. Tsouroukdissian A., Carcangiu C.E., Pineda Amo I., Martin M., Fischer T., Kuhnle B., Scheu M., 2011, Wind turbine tower load reduction using passive and semiactive dampers, European Wind Energy Association Annual Event, Brussels
  • 42. Wang Y., Dyke S., 2013, Modal-based LQG for smart base isolation system design in seismic response control, Structural Control and Health Monitoring, 20, 5, 753-768
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniajacą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b35a5636-e633-48fd-9272-20697831caba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.