PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analiza porównawcza systemów zasilania aut niskoemisyjnych - akumulatorowego oraz hybrydowego opartego o akumulator i superkondensator

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Comparative analysis of powering low-emission cars
Języki publikacji
PL
Abstrakty
PL
W niniejszym opracowaniu dokonano analizy porównawczej wybranych elementów dwóch kluczowych systemów napędowych, które znajdują zastosowanie w pojazdach o charakterze niskoemisyjnym. Pierwszym z systemów jest konwencjonalny system oparty na akumulatorze, natomiast drugim to system hybrydowy, który wykorzystuje zarówno akumulator, jak i superkondensator. Celem analizy było rozpoznanie różnic pomiędzy tymi dwoma podejściami oraz określenie ich zalet, wad i potencjalnych obszarów zastosowań.
EN
This study provides a detailed comparative analysis of two key propulsion systems that are used in low-emission vehicles. The first of the systems studied is a conventional battery-based system, while the second is a hybrid system that uses both a battery and a supercapacitor. The aim of the analysis was to understand the differences between the two approaches and identify their advantages, disadvantages and potential areas of application.
Rocznik
Strony
292--295
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
  • Politechnika Wrocławska, Katedra Energoelektryki, ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław
  • Politechnika Wrocławska, Katedra Energoelektryki, ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław
Bibliografia
  • [1] Johnson B., D. Cericola, R. Kötz, Hybridization of rechargeable batteries and electrochemical capacitors: principles and limits, Electrochim. Acta 72 (2012) 1–17
  • [2] S. Manzetti, F. Mariasiu, Electric vehicle battery technologies: from present state to future systems, Renew. Sustain. Energy Rev. 51 (2015) 1004–1012
  • [3] M. Hannan, F. Azidin, A. Mohamed, Hybrid electric vehicles and their challenges: a review, Renew. Sustain. Energy Rev. 29 (2014) 135–150
  • [4] K. Chau, Y. Wong, C. Chan, An overview of energy sources for electric vehicles, Energy Convers. Manage 40 (1999) 1021– 1039, http://dx.doi.org/10.1016/S0196- 8904(99)00021-7.
  • [5] B. Owens, T. Osaka, Panel discussion future prospects of lithium batteries, J. Power Sources 68 (1997) 173–186,
  • [6] G. Gutmann, Hybrid electric vehicles and electrochemical storage systems — a technology Push−pull couple, J. Power Sources 84 (1999) 275–279, http://dx.doi. org/10.1016/S0378- 7753(99)00328-6.
  • [7] L. Lam, R. Louey, Development of ultra-battery for hybrid-electric vehicle appli- cations, J. Power Sources 158 (2006) 1140–1148,
  • [8] A. Shukla, A. Aricò, V. Antonucci, An appraisal of electric automobile power sources, Renew. Sustain. Energy Rev. 5 (2001) 137–155.
  • [9] S.F. Tie, C.W. Tan, A review of energy sources and energy management system in electric vehicles, Renew. Sustain. Energy Rev. 20 (2013) 82–102.
  • [10] M. Hannan, M. Hoque, A. Mohamed, A. Ayob, Review of energy storage systems for electric vehicle applications: issues and challenges, Renew. Sustain. Energy Rev. 69 (2017) 771– 789.
  • [11] A. Burke, Ultracapacitors: why, how, and where is the technology, J. Power Sources (2000) 37–50.
  • [13] P. Bentley, D.A. Stone, N. Schofield, The parallel combination of a VRLA cell and supercapacitor for use as a hybrid vehicle peak power buffer, J. Power Sources 147 (2005) 288–294.
  • [14] G. Wight, H. Garabedian, B. Arnet, J. Morneau, Integration and testing of a DC/DC controlled supercapacitor into an electric vehicle, 18th International Electric Vehicle Symposium: Proceedings, 2001 October 20–24, Berlin, Germany.
  • [15] C. Ashtiani, R. Wright, G. Hunt, Ultracapacitors for automotive applications, J. Power Sources 154 (2006) 561–566.
  • [16] C. Holland, J. Weidner, R. Dougal, R. White, Experimental characterization of hybrid power systems under pulse current loads, J. Power Sources 109 (2002) 32–37.
  • [17] A. Kuperman, I. Aharon, Battery–ultracapacitor hybrids for pulsed current loads: a review, Renew. Sustain. Energy Rev. 15 (2011) 981–992.
  • [18] N. Omar, M. Daowd, O. Hegazy, P. Bossche, T. Coosemans, J. Mierlo, Electrical double-layer capacitors in hybrid topologies — assessment and evaluation of their performance, Energies 5 (2012) 4533–4568.
  • [19] K. Chau, Y. Wong, C. Chan, An overview of energy sources for electric vehicles, Energy Convers. Manage 40 (1999) 1021– 1039.
  • [20] C. Xiang, Y. Wang, S. Hu, W. Wang, A new topology and control strategy for a hybrid battery-ultracapacitor energy storage system, Energies 7 (2014) 2874–2896.
  • [21] Z. Song, J. Li, X. Han, L. Xu, L. Lu, M. Ouyang, Heath Hofmann multi-objective optimization of a semi-active battery/supercapacitor energy storage system for electric vehicles, Appl. Energy 135 (2014) 212–224.
  • [22] S. Pay, Y. Baghzouz, Effectiveness of BAT-supercapacitor combination in electric vehicles, IEEE Bologna Power Tech Conference, 2003 June 23rd -26th, Bologna, Italy.
  • [23] B. Wang, J. Xu, B. Cao, X. Zhou, A novel multimode hybrid energy storage system and its energy management strategy for electric vehicles, J. Power Sources 281 (2015) 432–443.
  • [24] M. Wei, M. Marei, M. Salama, S. Lambert, Designing energy storage systems for hybrid electric vehicles, 2nd International Conference, 2005 Kaninaskis, Alberta.
  • [25] J. Cao, A. Emadi, A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles, IEEE Trans. Power Electron 27 (2012) 122–132.
  • [26] Z. Song, J. Li, X. Han, L. Xu, L. Lu, M. Ouyang, Heath Hofmann multi-objective optimization of a semi-active battery/supercapacitor energy storage system for electric vehicles, Appl. Energy 135 (2014) 212–224.
  • [27] Y. Bin, A. Réama, A. Cela, A. Hammar, Optymalne zarządzanie energią w hybrydowym systemie elektrycznym pojazdu z wykorzystaniem informacji o trasie z wyprzedzeniem, IFAC Proc. Tom. 43 (2010) 30–35.
  • [28] Kouchachvili, Lia, Wahiba Yaïci i Evgueniy Entchev. „Hybrid battery/supercapacitor energy storage system for the electric vehicles”. Journal of Power Sources 374 (2018): 237-248.
  • [29] Mariasiu, Florin, and Edmond A. Kelemen. "Analysis of the Energy Efficiency of a Hybrid Energy Storage System for an Electric Vehicle." Batteries 9.8 (2023): 419.
  • [30] K. Mikkelsen, Design and Evaluation of Hybrid Energy Storage Systems for Electric Powertrains, a Thesis Presented to the University of Waterloo in Fulfillment of the Thesis Requirement for the Degree of Master of Applied Science in Mechanical Engineering Waterloo, Ontario, Canada (2010).
  • [31] H. Jung, H. Wang, T. Hu, Control design for robust tracking and smooth transition in power systems with battery/supercapacitor hybrid energy storage devices, J.Power Sources 267 (2014) 566–575
  • [32] T. Katrašnik, Hybridization of powertrain and downsizing of IC engine – analysis and parametric study − Part 2, Energy Convers. Manage 48 (2007) 1424–1434.
  • [33] C. Forgez, D. Vinh Do, G. Friedrich, M. Morcrette, C. Delacourt, Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery, J. Power Sources 195 (2010) 2961–2968.
  • [34] Z. Song, H. Hofmann, J. Li, J. Hou, X. Zhang, M. Ouyang, The optimization of a hybrid energy storage system at subzero temperatures: energy management strategy design and battery heating requirement analysis, Appl. Energy 159 (2015) 576– 588.
  • [35] H. Yu, D. Tarsitano, X. Hu, F. Cheli, Real time energy management strategy for a fast charging electric urban bus powered by hybrid energy storage system, Energy 112 (2016) 322–333.
  • [36] J. Armenta, C. Núñez, N. Visairo, I. Lázaro, An advanced energy management system for controlling the ultracapacitor discharge and improving the electric vehicle range, J. Power Sources 284 (2015) 452–458.
  • [37] P. Clarke, T. Muneer, K. Cullinane, Cutting vehicle emissions with regenerative braking, Transp. Res. Part D Transp. Environ. 15 (2010) 160–167.
  • [38] M.A. Sakka, H. Gualous, J.V. Mierlo, H. Culcu, Thermal modeling and heat management of supercapacitor modules for vehicle applications, J. Power Sources 194 (2009) 581–587.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b358a40b-14d8-4c86-9afe-4b68e5e6f314
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.