PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of the effect of airflow rate and agitation speed on entrainment of ash particles in bottom ash flotation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To enhance the recovery and grade of the final product, reducing the entrainment of the hydrophilic particles during flotation is critical. We conducted the improvement of entrainment to reduce the amount of ash in the concentrate with the purpose of recovering high-quality unburned carbon from the bottom ash and reusing it as fuel in power plant. In this study, we investigated the effects of airflow rate and agitation speed on the entrainment of hydrophilic particles. In the selfaerating flotation machine, it was difficult to independently control the agitation speed and airflow rate, resulting in the degree of entrainment of 0.74. By independently controlling the airflow in which hydrophobic particles can float under conditions of the degree of entrainment with 0.7 (low agitation speed: 900 rpm), the combustible recovery and unburned carbon content of concentrate were 93.71% and 93.60%, respectively. The degree of entrainment was found to be 0.57, and entrainment could be minimized through independent control of airflow rate and agitation speed. To minimize entrainment, it is effective to inject air that can suspend hydrophobic particles in a low agitation speed condition.
Słowa kluczowe
Rocznik
Strony
art. no. 187835
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
  • Mineral Processing & Metallurgy Research Center, Resources Utilization Division, Korea Institute of Geoscience and Minera Resources (KIGAM), 124 Gwahak-ro, Yuseong-gu, Daejeon 34132, Republic of Korea
autor
  • Mineral Processing & Metallurgy Research Center, Resources Utilization Division, Korea Institute of Geoscience and Minera Resources (KIGAM), 124 Gwahak-ro, Yuseong-gu, Daejeon 34132, Republic of Korea
autor
  • Mineral Processing & Metallurgy Research Center, Resources Utilization Division, Korea Institute of Geoscience and Minera Resources (KIGAM), 124 Gwahak-ro, Yuseong-gu, Daejeon 34132, Republic of Korea
  • Environmental Technology Division, Korea Testing Laboratory, 87 Digital-ro 26-gil, Guro-gu, Seoul 08389, Republic of Korea
Bibliografia
  • KIM, J. K., WON, J., 2022. Assessing friction angle of sand according to fly ash and bottom ash contents. Journal of the Korean Society of Hazard Mitigation. 22, 6, 237–245.
  • ZHANG, L., YANG, F., TAO, Y., 2020. Removal of unburned carbon from fly ash using enhanced gravity separation and the comparison with froth flotation. Fuel. 259, 116282.
  • ZHOU, F., YAN, C., WANG, H., ZHOU, S., LIANG, H., 2017. The result of surfactants on froth flotation of unburned carbon from coal fly ash. Fuel. 190, 182–188.
  • YANG, L., ZHU, Z., LI, D., YAN, X., ZHANG, H., 2019. Effects of particle size on the flotation behavior of coal fly ash. Waste Management. 85, 490–497.
  • ZHANG, W., HONAKER, R., 2015. Studies on carbon flotation from fly ash. Fuel Processing Technology. 139, 236–241.
  • YANG, L., LI, D., ZHU, Z., XU, M., YAN, X., ZHANG, H., 2019. Effect of the intensification of reconditioning on the separation of unburned carbon from coal fly ash. Fuel. 242, 174–183.
  • UM, N. I., AHN, J. W., HAN, G. C., LEE, S. J., KIM, H, S., CHO, H., Flotation process in coal bottom ash and their effect on the removal of unburned carbon. Geosystem Engineering. 11, 4, 75–80.
  • MOON, H., LEE, J. Y., CHUNG, C. W., 2016. Evaluation on Properties of Concrete Brick Using Magnetically Separated Bottom Ash. Proc. of the 2016 Autumn Conference of the Busan•Ulsan•Gyeongnam Chapter of Architectural Institute of Korea. 55–56.
  • KIM, M., CHA, J., CHANG, H., 2018. The Characteristic Study on Bottom Ash Flotation of Vegetable Oil as a Collector. Journal of Korean Institute of Resources Recycling. 27, 2, 55-62.
  • WILLS, B., FINCH, J., 2016. Will’s Mineral Processing Technology. Elsevier. Netherlands.
  • RUBINSTEIN, J. B., 1994. Column Flotation Processes, Designs and Practices. Process engineering for the chemical, metals, and minerals industry, Volume 2, United States.
  • JOHNSON, N. W., 1972. The Flotation Behaviour of Some Chalcopyrite Ores. The University of Queensland, Brisbane, Australia.
  • YIANATOS, J., CONTRERAS, F., 2010. Particle entrainment model for industrial flotation cells. Powder Technology. 197, 260–267.
  • WARREN, L. J., 1985. Determination of the contributions of true flotation and entrainment in batch flotation tests, International Journal of Mineral Processing. 14, 33–44.
  • LASKOWSKI, M. F., 2007. Effect of frothers and solid particles on the rate of water transfer to froth. International Journal of Mineral Processing. 84, 33–40.
  • YANG B., YIN, W., ZHU, Z., WANG, D., HAN, H., FU, Y., SUN, H., CHU, F., YAO, J., 2016. A new model for the degree of entrainment in froth flotation based on mineral particle characteristics. Powder technology. 354, 358–368.
  • WANG, L., PENG, Y., RUNGE, K., 2016. Entrainment in froth flotation: The degree of entrainment and its contributing factors. Powder Technology. 288, 202–211.
  • ZHENG, X., JOHNSON, N. W., FRANZIDIS, J. P., 2006. Modelling of entrainment in industrial flotation cells: water recovery and degree of entrainment. Minerals Engineering. 19, 1191–1203.
  • MENG, J., 2006. Measurement and Prediction of Turbulence in Flotation Cells. The University of Queensland.
  • TABOSA, E., RUNGE, K., HOLTHAM, P., 2016. The effect of cell hydrodynamics on flotation performance, International Journal of Mineral Processing. 156, 99–107.
  • ANZOOM, S. J., TRIPATHY, S. K., SAHU, L., BHARRACHARYA, S., MUKHERJEE, A. K., 2020. Influence of impeller speed and cell volume on coal flotation performance in a self-aerating flotation machine. Advanced Powder Technology. 31, 4053–4063.
  • WANG, L., RUNGE, K., PENG, Y., VOS, C., 2016. An empirical model for the degree of entrainment in froth flotation based on particle size and density. Minerals Engineering. 98, 187-193.
  • YU, H., ZHU, Y., LU, L., HU, X., LI, S., 2023. Removal of dolomite and potassium feldspar from apatite using simultaneous flotation with a mixed cationic-anionic collector. International Journal of Mining Science and Technology. 33, 783-791.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b3526fde-f768-4889-bde2-7c19f7f636e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.