PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of corrosive behaviour and microstructure characterization of hybrid friction stir welded martensitic stainless steel

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study examined the effect of induction heating on the microstructure and corrosion characteristics of hybrid friction stir welded AISI 410 stainless steel. Five joints have been produced with different friction stir welding parameters like welding speed, spindle speed, plunge depth, and induction power. Their microstructures were evaluated using a scanning electron microscope, and chemical composition was examined using energy-dispersive X-ray spectroscopy (EDX). The rate of corrosion was found out via the weight loss method in a 1 M HCL solution. The hybrid friction stir welding method used for this work is induction assisted friction stir welding; the results show that this method could produce sound AISI 410 stainless steel Joints. The experiment results show that the joint made at a spindle speed of 1150 rpm, welding speed 40 mm/min, plunge depth 0.5 mm, and in-situ heat by induction 480°C show a better corrosion resistance property with a fine grain structure.
Rocznik
Strony
67--78
Opis fizyczny
Bibliogr. 57 poz., fot., tab., wykr.
Twórcy
  • Institute of Materials Joining, Shandong University, Jinan, China
autor
  • Department of Production Engineering, Government College of Technology, Coimbatore, Tamilnadu, India
  • Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Poland
  • Department of Mechanical Engineering, Wichita State University, Kansas, USA
Bibliografia
  • 1. Siddiquee AN, Pandey S, Khan NZ: Friction Stir Welding of austenitic stainless steel: a study on microstructure and effect of parameters on tensile strength. Materials Today: Proceedings, 2, 2015, 1388-1397.
  • 2. Mohan DG, Gopi S, Rajasekar V: Effect of induction assisted friction stir welding on corrosive behaviour, mechanical properties and microstructure of AISI 410 stainless steel. Indian Journal of Engineering and Materials Sciences, 25, 2018, 203-208.
  • 3. Astarita A, Curioni M, Squillace A, Zhou X, Bellucci F, Thompson GE, Beamish KA: Corrosion behaviour of stainless steel–titanium alloy linear friction welded joints: Galvanic coupling. Materials and Corrosion, 66(2), 2018, 111-117.
  • 4. Atapour M, Sarlak H, Esmailzadeh M: Pitting corrosion susceptibility of friction stir welded lean duplex stainless steel joints. International Journal of Advanced Manufacturing Technologies, 83, 2015, 721-728.
  • 5. Skowrońska B, Chmielewski T, Kulczyk M, Skiba J, Przybysz S: Microstuctural investigation of a friction-welded 316L stainless steel with ultrafine-grained structure obtained by hydrostatic extrusion. Materials, 14(6), 2021, 1537.
  • 6. Chen J, Shi L, Wu CS, Jiang Y: The effect of tool pin size and taper angle on the thermal process and plastic material flow in friction stir welding. International Journal of Advanced Manufacturing Technology, 116, 2021, 2847–2860.
  • 7. Mohan DG, Gopi S, Sasikumar A: Examining the mechanical and metallurgical properties of single pass friction stir welded dissimilar aluminium alloys tee joints. SVOA Materials Science & Technology, 3(1), 2021, 6–12.
  • 8. Chagas de Souza G, da Silva AL, Tavares SSM, Pardal JM, Ferreira MLR, Filho IC: Mechanical properties and corrosion resistance evaluation of super duplex stainless steel UNS S32760 repaired by GTAW process. Welding International, 30, 2016, 432–442.
  • 9. Mohan DG, Gopi S: Study on the mechanical behaviour of friction stir welded aluminium alloys 6061 with 5052. The 8th Industrial Automation and Electromechanical Engineering Conference, Institute of Engineering and Management, Bangkok, Thailand, 2017.
  • 10. Mohan DG, Wu CS: A Review on Friction Stir Welding of Steels. Chinese Journal of Mechanical Engineering, Springer, 2021 (In press)
  • 11. Guo R, Shen Y, Huang G, Zhang W, Guan W: Microstructures and mechanical properties of thin 304 stainless steel sheets by friction stir welding. Journal of Adhesion Science and Technology, 32(12), 2018, 1313-1323.
  • 12. Subramanian K, Murugesan S, Mohan DG, Tomków J. Study on Dry Sliding Wear and Friction Behaviour of Al7068/Si3N4/BN Hybrid Composites. Materials, 14, 2021, 6560.
  • 13. Kubit A, Drabczyk M, Trzepieciński T, Bochnowski W, Kaščák Ľ, Slota J: Fatigue life assessment of refill friction stir spot welded alclad 7075-T6 aluminium alloy joints. Metals, 10, 2020, 633.
  • 14. Song G, Li T, Yu J, Liu L: A review of bonding immiscible Mg/steel dissimilar metals. Materials, 11, 2018, 2515.
  • 15. Liu FC, Hovanski Y, Miles MP, Sorensen CD, Nelson TW: A review of friction stir welding of steels: Tool, material flow, microstructure, and properties. Journal of Materials Science & Technology, 34(1), 2018, 39-57.
  • 16. Mohan DG, Gopi S, Rajasekar V: Mechanical and corrosion resistant properties of hybrid-welded stainless steel. Materials Performance, 57(1), 2018, 53–56.
  • 17. Tamadon A, Pons DJ, Sued K, Clucs D: Internal flow behaviour and microstructural evolution of the bobbin-FSW welds: Thermomechanical comparison between 1XXX and 3XXX aluminium grades. Advances in Materials Science, 21(2), 2021, 40-64.
  • 18. Cui L, Zhang C, Yong-chang L, Liu XG, Wang DP, Li HJ: Recent progress in friction stir welding tools used for steels. Journal of Iron and Steel Research International, 25, 2018, 477-486.
  • 19. Gao S, Zhao H, Zhang R, Ma C, Zhou L, Chen G, Li D, Yang H, Song X, Zhao Y: Microstructure evolution of friction stir processed 2507 duplex stainless steel. Welding in the World, 2021.
  • 20. Han Y, Jiang X, Chen S, Yuan T, Zhang H, Bai Y, Xiang Y, Li X: Microstructure and mechanical properties of electrically assisted friction stir welded AZ3 1B alloy joints. Journal of Manufacturing Processes, 43, 2019, 26-34.
  • 21. Gopi S, Manonmani, K: Predicting tensile strength of double side friction stir welded 6082-T6 aluminium alloy. Science and Technology of Welding and Joining, 17(7), 2012, 601-607.
  • 22. Hua P, Moronov S, Nie CZ, Sato YS, Kokawa H, Park SHC, Hirano S: Microstructure and properties in friction stir weld of 12Cr steel. Science and Technology of Welding and Joining, vol. 19, 2014, 176- 181.
  • 23. Mohan DG, Gopi S: Influence of In-situ induction assisted friction stir welding on tensile, microhardness, corrosion resistance and microstructural properties of martensitic steel. Engineering Research Express, 3, 2021, 025023.
  • 24. Cui L, Fujii H, Tsuji N, Nogi K: Friction stir welding of a high carbon steel. Scripta Materialia, 56, 2017, 637-640.
  • 25. Magnani M, Terada M, Lino AO, Tallo VP, da Fonseca EB, Santos TFA, Ramirez AJ: Microstructural and electrochemical characterization of friction stir welded duplex stainless steels. International Journal of Electrochemical Science, 9, 2014, 2966- 2977.
  • 26. Mohan DG, Gopi S: Induction assisted friction stir welding: a review. Australian Journal of Mechanical Engineering, 1, 2018, 119-123.
  • 27. Mironov S, Sato YS, Yoneyama S, Kokawa H, Fujii HT, Hirano S: Microstructure and tensile behavior of friction-stir welded TRIP steel. Materials Science and Engineering A, 717, 2018, 72-82.
  • 28. Wang L, Chen J, Wu CS: Auxiliary energy-assisted arc welding processes and their modelling, sensing and control. Science and Technology of Welding and Joining, 26(5), 2021, 389-411.
  • 29. Thimmaraju PK, Arakanti K, Chandra Mohan Reddy G: Influence of tool geometry on material flow pattern in friction stir welding process. International Journal of Theoretical and Applied Mechanics, 12, 2017, 445-458.
  • 30. Memon S, Paidar M, Sadreddini S, Cooke K, Babaei B, Ojo OO: Mechanical and microstructural aspects of the hybrid joint of PP-C30S and 2219 aluminum alloy. Results in Physics, 19, 2020, 103629.
  • 31. Sasikumar A, Gopi S, Mohan, DG: Effect of magnesium and chromium fillers on the microstructure and tensile strength of friction stir welded dissimilar aluminium alloys. Materials Research Express, 6(8), 2019, 086580.
  • 32. Shrikrishna KA, Sathiya P: Effects of post weld heat treatment on friction welded duplex stainless steel joints. Journal of Manufacturing Processes, 21, 2015, 196–200.
  • 33. Li X, Li C, Liang Z, Xusheng Q, Wang D: Research on the corrosion behavior of double-side friction stir welded 6082Al alloy thick plate. Journal of Adhesion Science and Technology, 35(9), 2020, 993-1005.
  • 34. Su H, Wang T, Wu CS. Formation of the periodic material flow behaviour in friction stir welding, Science and Technology of Welding and Joining, 26(4), 2021, 286-293.
  • 35. Yang C, Wu C, Gao S. Modified constitutive equation by using phase field simulation of dynamic recrystallization in friction stir welding. Journal of Materials Research and Technology, 12, 2021, 916–929.
  • 36. Paidar M, Memon S, Samusenkov VO, Babaei B, Ojo OO: Friction spot extrusion welding-brazing of copper to aluminum alloy. Materials Letters, 285, 2021, 129160.
  • 37. Walczak M, Szala M: Effect of shoot peening on the surface properties, corrosion and wear performance of 17-4PH steel produced by DMLS additive manufacturing. Archives of Civil and Mechanical Engineering, 21, 2021, 157.
  • 38. Guo C, Shen Y, Hou W, Yan Y, Huang G, Liu W: Effect of groove depth and plunge depth on microstructure and mechanical properties of friction stir butt welded AA6061-T6. Journal of Adhesion Science and Technology, 32(24), 2018, 2709-726.
  • 39. Sun Z, Wu C S. Influence of tool thread pitch on material flow and thermal process in friction stir welding. Journal of Materials Processing Technology, 275, 2020,116281.
  • 40. Mohan DG, Tomków J, Gopi S: Induction assisted hybrid Friction Stir Welding of dissimilar materials AA5052 aluminium alloy and X12Cr13 stainless steel. Advances in Materials Science, 21(3), 2021, 17-30.
  • 41. Memon S, Paidar M, Mehrez S, Cooke K, Ojo OO, Lankarani HM: Effects of materials positioning and tool rotational speed on metallurgical and mechanical properties of dissimilar modified friction stir clinching of AA5754-O and AA2024-T3 sheets. Results in Physics, 22, 2021, 103962.
  • 42. AnandhaKumar CJ, Gopi S, Mohan DG, Shashi Kumar S: Predicting the ultimate tensile strength and wear rate of aluminium hybrid surface composites fabricated via friction stir processing using computational Mmethods. Journal of Adhesion Science and Technology, 2021.
  • 43. Balamurugan M, Gopi S, Mohan DG: Influence of tool pin profiles on the filler added friction stir spot welded dissimilar aluminium alloy joints. Materials Research Express, 8, 2021, 096531.
  • 44. Memon S, Fydrych D, Fernandes AC, Derazkola HaA, Derazkola HeA: Effect of FSW tool plunge depth on properties of an Al-Mg-Si alloy T-joint: thermomechanical modelling and experimental evolution. Materials, 14, 2021, 4754.
  • 45. Gopi S, Mohan DG: Evaluating the welding pulses of various tool profiles in single-pass friction stir welding of 6082-T6 aluminium alloy. Journal of Welding and Joining, The Korean Welding and Joining Society, 39(3), 2021, 284-294.
  • 46. Memon S, Paidar M, Ojo OO, Cooke K, Babaei B, Masoumnezhad M: The role of stirring time on the metallurgical and mechanical properties during modified friction stir clinching of AA6061-T6 and AA7075-T6 sheets. Results in Physics, 19, 2020, 103364.
  • 47. Sasikumar A, Gopi S, Mohan DG: Effect of welding speed on microhardness and corrosion resistance properties of filler induced friction stir welded AA6082 and AA5052 joints. Materials Research Express, 8, 2021, 066531.
  • 48. Geng X, Feng H, Jiang Z, Li H, Zhang B, Zhang S, Wang Q, Li J: Microstructure, mechanical and corrosion properties of friction stir welding high nitrogen martensitic stainless steel 30Cr15Mo1N. Metals, 6(12), 2016, 301.
  • 49. Mohan DG, Gopi S: Influence of in-situ induction heated friction stir welding on tensile, microhardness, corrosion resistance and microstructural properties of martensitic steel. Engineering Research Express, 3, 2021, 025023.
  • 50. Memon S, Paidar M, Mehta KP, Babaei B, Lankarani HM: Friction spot extrusion welding on dissimilar materials AA2024-T3 to AA5754-O: effect of shoulder plunge depth. Journal of Materials Engineering and Performance, 30, 2021, 334-345.
  • 51. Mohan DG, Gopi S: Optimized parameters prediction for single-pass friction stir welding on dissimilar aluminium alloys T-joint. International Journal on Emerging Technologies, 12(2), 2021, 15-20.
  • 52. Yu X, Mazumder B, Miller MK, David S, Feng Z: Stability of Y–Ti–O precipitates in friction stir welded nanostructured ferritic alloys. Science and Technology of Welding and Joining, 20, 2015, 236-241.
  • 53. Ghiasvand A, Yavari MM, Tomków J, Grimaldo Guerrero JW, Kheradmandan H, Dorofeev A, Memon S, Derazkola HA: Investigation of mechanical and microstructural properties of welded specimens of AA6061-T6 alloy with friction stir welding and parallel-friction stir welding methods. Materials, 14, 2021, 6003.
  • 54. Kosturek R, Śnieżek L, Torzewski J, Ślęzak T, Wachowski M, Szachogłuchowicz I: Research on the properties and low cycle fatigue of Sc-modified AA2519-T62 FSW joint. Materials, 13, 2020, 5226.
  • 55. Sameer MD, Birru AK: Selection of friction stir welding tool rotational speed for joining dual phase DP600 steel sheets – an experimental approach. Journal of Adhesion Science and Technology, 35, 2020, 751-776.
  • 56. Liu XC, Sun YF, Nagira T, Ushioda K, Fujii H: Microstructure evolution of Cu–30Zn during friction stir welding. Journal of Materials Science, 53, 2018, 10423-10441.
  • 57. Paidar M, Mehrez S, Babaei B, Memon S, Ojo OO, Lankarani HM. Dissimilar welding of AA5083 to AZ31 Mg alloys using modified friction stir clinching brazing. Materials Letters, 301, 2021, 129764.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b34a6613-760c-40dc-8fe2-2d22156d8ba6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.