PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Working Fluid Selection for Simple and Recuperative Organic Rankine Cycle Operating Under Varying Conditions: A Comparative Analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The selection of suitable working fluid for simple and recuperative organic Rankine cycle (ORC) operating under subcritical, superheated and supercritical conditions are investigated. 11 fluids with critical temperature above 1500C are considered as potential candidates. Performance screening parameters such as net power output, thermal efficiency, turbine sizing parameter (SP) and volumetric flow ratio (VFR), exegetic parameters like irreversibility rate, fuel depletion ratio, and improvement potential rate of exergy destruction were also evaluated. Results indicate that R600a, R236fa and R1233dz(E) demonstrated the best performance for subcritical, superheated and supercritical simple ORC, respectively. R236fa and R1233dz(E) proved more suitable for subcritical/superheated and supercritical recuperative cycles, respectively. The system exegetic efficiency is reveal to be significantly higher in subcritical/superheated (61-65%) cycles compared to the supercritical (35-45%) cycle, the evaporator seen as the main source of exergy destruction, accounting for 17-37% of inlet exergy destroyed and about 8-24% in the turbine.
Twórcy
  • Department of Mechanical Engineering, Faculty of Engineering, Cross River University of Technology, Calabar, Nigeria
autor
  • Department of Mechanical Engineering, Faculty of Engineering, Cross River University of Technology, Calabar, Nigeria
autor
  • Department of Mechanical Engineering, Faculty of Engineering, Cross River University of Technology, Calabar, Nigeria
autor
  • Department of Mechanical Engineering, Faculty of Engineering, University of Calabar, Nigeria
Bibliografia
  • 1. Qiu, G. (2012) ‘Selection of working fluids for micro-CHP systems with ORC’, Renewable Energy. doi: 10.1016/j.renene.2012.06.006.
  • 2. Tchanche, B. F., Lambrinos, G., Frangoudakis, A. and Papadakis, G. (2011) ‘Low-grade heat conversion into power using organic Rankine cycles - A review of various applications’, Renewable and Sustainable Energy Reviews. doi: 10.1016/j.rser.2011.07.024.
  • 3. Chen, H., Goswami, D. Y. and Stefanakos, E. K. (2010) ‘A review of thermodynamic cycles and working fluids for the conversion of low-grade heat’, Renewable and Sustainable Energy Reviews. doi: 10.1016/j.rser.2010.07.006.
  • 4. Saleh, B., Koglbauer, G., Wendland, M. and Fischer, J. (2007) ‘Working fluids for low-temperature organic Rankine cycles’, Energy. doi: 10.1016/j.energy.2006.07.001.
  • 5. Yari, M. (2009) ‘Performance analysis of the different organic Rankine cycles (ORCs) using dry fluids’, International Journal of Exergy. doi: 10.1504/IJEX.2009.025324.
  • 6. Tchanche, B.F., Papadakis, G., Lambrinos, G. and Frangoudakis, A. (2009) ‘Fluid selection for a low-temperature solar organic Rankine cycle’, Applied Thermal Engineering. doi: 10.1016/j.applthermaleng.2008.12.025.
  • 7. Lai, N.A., Wendland, M. and Fischer, J. (2011) ‘Working fluids for high-temperature organic Rankine cycles’, Energy. doi: 10.1016/j.energy.2010.10.051.
  • 8. Karellas, S. and Schuster, A. (2008) ‘Supercritical fluid parameters in organic rankine cycle applications’, International Journal of Thermodynamics. doi: 10.5541/ijot.1034000217.
  • 9. Maizza, V. and Maizza, A. (1996) ‘Working fluids in non-steady flows for waste energy recovery systems’, Applied Thermal Engineering. doi: 10.1016/1359-4311(95)00044-5.
  • 10. Badr, O., Probert, S. D. and O’Callaghan, P. W. (1985) ‘Selecting a working fluid for a Rankine-cycle engine’, Applied Energy. doi: 10.1016/0306-2619(85)90072-8.
  • 11. Drescher, U. and Brüggemann, D. (2007) ‘Fluid selection for the Organic Rankine Cycle (ORC) in biomass power and heat plants’, Applied Thermal Engineering. doi: 10.1016/j.applthermaleng.2006.04.024.
  • 12. Bruno, J.C., López-Villada, J., Letelier, E., Romera, S. and Coronas, A. (2008) ‘Modelling and optimisation of solar organic rankine cycle engines for reverse osmosis desalination’, Applied Thermal Engineering. doi: 10.1016/j.applthermaleng.2007.12.022.
  • 13. Peñate, B. and García-Rodríguez, L. (2012) ‘Sea-water reverse osmosis desalination driven by a solar Organic Rankine Cycle: Design and technology assessment for medium capacity range’, Desalination. doi: 10.1016/j.desal.2011.08.040.
  • 14. Maraver, D., Uche, J. and Royo, J. (2012) ‘Assessment of high temperature organic Rankine cycle engine for polygeneration with MED desalination: A preliminary approach’, Energy Conversion and Management. doi: 10.1016/j.enconman.2011.08.013.
  • 15. Tchanche, B.F., Lambrinos, G., Frangoudakis, A. and Papadakis, G. (2010) ‘Exergy analysis of micro-organic Rankine power cycles for a small scale solar driven reverse osmosis desalination system’, Applied Energy. doi: 10.1016/j.apenergy.2009.07.011.
  • 16. Zhao, P., Wang, J., Gao, L. and Dai, Y. (2012) ‘Parametric analysis of a hybrid power system using organic Rankine cycle to recover waste heat from proton exchange membrane fuel cell’, International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2011.11.081.
  • 17. Wang, E.H., Zhang, H.G., Zhao, Y., Fan, B.Y., Wu, Y.T. and Mu, Q.H. (2012) ‘Performance analysis of a novel system combining a dual loop organic Rankine cycle (ORC) with a gasoline engine’, Energy. doi: 10.1016/j.energy.2012.04.006.
  • 18. He, M., Zhang, X., Zeng, K. and Gao, K. (2011) ‘A combined thermodynamic cycle used for waste heat recovery of internal combustion engine’, Energy. doi: 10.1016/j.energy.2011.10.014.
  • 19. Katsanos, C.O., Hountalas, D.T. and Pariotis, E.G. (2012) ‘Thermodynamic analysis of a Rankine cycle applied on a diesel truck engine using steam and organic medium’, in Energy Conversion and Management. doi: 10.1016/j.enconman.2011.12.026.
  • 20. Wang, H., Peterson, R., Harada, K., Miller, E., Ingram-Goble, R., Fisher, L., Yih, J. and Ward, C. (2011) ‘Performance of a combined organic Rankine cycle and vapor compression cycle for heat activated cooling’, Energy. doi: 10.1016/j.energy.2010.10.020.
  • 21. Aneke, M., Agnew, B., Underwood, C. and Menkiti, M. (2012) ‘Thermodynamic analysis of alternative refrigeration cycles driven from waste heat in a food processing application’, International Journal of Refrigeration. doi: 10.1016/j.ijrefrig.2012.04.008.
  • 22. Liu, H., Shao, Y. and Li, J. (2011) ‘A biomass-fired micro-scale CHP system with organic Rankine cycle (ORC) - Thermodynamic modelling studies’, Biomass and Bioenergy. doi: 10.1016/j.biombioe.2011.06.025.
  • 23. Taljan, G., Verbič, G., Pantoš, M., Sakulin, M. and Fickert, L. (2012) ‘Optimal sizing of biomass-fired Organic Rankine Cycle CHP system with heat storage’, Renewable Energy. doi: 10.1016/j.renene.2011.09.034.
  • 24. Bao, J. and Zhao, L. (2013) ‘A review of working fluid and expander selections for organic Rankine cycle’, Renewable and Sustainable Energy Reviews. doi: 10.1016/j.rser.2013.03.040.
  • 25. Roy, J.P., Mishra, M.K. and Misra, A. (2010) ‘Parametric optimization and performance analysis of a waste heat recovery system using Organic Rankine Cycle’, Energy. doi: 10.1016/j.energy.2010.08.013.
  • 26. Hung, T.C. (2001) ‘Waste heat recovery of organic Rankine cycle using dry fluids’, Energy Conversion and Management. doi: 10.1016/S0196-8904(00)00081-9.
  • 27. Desai, N.B. and Bandyopadhyay, S. (2009) ‘Process integration of organic Rankine cycle’, Energy. doi: 10.1016/j.energy.2009.04.037.
  • 28. Hung, T.C., Shai, T.Y. and Wang, S.K. (1997) ‘A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat’, Energy. doi: 10.1016/S0360-5442(96)00165-X.
  • 29. Hung, T.C., Wang, S.K., Kuo, C.H., Pei, B.S. and Tsai, K. F. (2010) ‘A study of organic working fluids on system efficiency of an ORC using low-grade energy sources’, Energy. doi: 10.1016/j.en-ergy.2009.11.025.
  • 30. Mago, P.J., Chamra, L.M., Srinivasan, K. and Somayaji, C. (2008) ‘An examination of regenerative organic Rankine cycles using dry fluids’, Applied Thermal Engineering. doi: 10.1016/j.appltherma-leng.2007.06.025.
  • 31. Roy, J.P., Mishra, M.K. and Misra, A. (2011) ‘Performance analysis of an Organic Rankine Cycle with superheating under different heat source temperature conditions’, Applied Energy. doi: 10.1016/j.apenergy.2011.02.042.
  • 32. Liu, B.T., Chien, K.H. and Wang, C. C. (2004) ‘Effect of working fluids on organic Rankine cycle for waste heat recovery’, Energy. doi: 10.1016/j.energy.2004.01.004.
  • 33. Quoilin, S., Broek, M. Van Den, Declaye, S., Dewallef, P. and Lemort, V. (2013) ‘Techno-economic survey of organic rankine cycle (ORC) systems’, Renewable and Sustainable Energy Reviews. doi: 10.1016/j.rser.2013.01.028.
  • 34. Macchi, E. and Perdichizzi, A. (1981) ‘Efficiency prediction for axial-flow turbines operating with nonconventional fluids’, Journal of Engineering for Gas Turbines and Power. doi: 10.1115/1.3230794.
  • 35. Angelino, G., Invernizzi, C. and Macchi, E. (1991) ‘Organic Working Fluid Optimization for Space Power Cycles’, in Modern Research Topics in Aerospace Propulsion. doi: 10.1007/978-1-4612-0945-4_16.
  • 36. Angelino, G. and Di Paliano, P. C. (2000) ‘Organic rankine cycles (ORCs) for energy recovery from molten carbonate fuel cells’, Proceedings of the Intersociety Energy Conversion Engineering Conference. doi: 10.1109/IECEC.2000.870957.
  • 37. Stijepovic, M.Z., Linke, P., Papadopoulos, A.I. and Grujic, A.S. (2012) ‘On the role of working fluid properties in Organic Rankine Cycle performance’, Applied Thermal Engineering. doi: 10.1016/j.applthermaleng.2011.10.057.
  • 38. Invernizzi, C., Iora, P. and Silva, P. (2007) ‘Bottoming micro-Rankine cycles for micro-gas turbines’, Applied Thermal Engineering. doi: 10.1016/j.applthermaleng.2006.05.003.
  • 39. Rayegan, R. and Tao, Y.X. (2011) ‘A procedure to select working fluids for Solar Organic Rankine Cycles (ORCs)’, Renewable Energy. doi: 10.1016/j.renene.2010.07.010.
  • 40. Wang, X., Levy, E.K., Pan, C., Romero, C.E., Banerjee, A., Rubio-Maya, C. and Pan, L. (2019) ‘Working fluid selection for organic Rankine cycle power generation using hot produced supercritical CO2 from a geothermal reservoir’, Applied Thermal Engineering. doi: 10.1016/j.appltherma-leng.2018.12.112.
  • 41. Al-Sulaiman, F. A. (2014) ‘Exergy analysis of parabolic trough solar collectors integrated with com
  • bined steam and organic Rankine cycles’, Energy Conversion and Management. Elsevier Ltd, 77, pp. 441–449. doi: 10.1016/j.enconman.2013.10.013.
  • 42. AlZahrani, A.A. and Dincer, I. (2018) ‘Energy and exergy analyses of a parabolic trough solar power plant using carbon dioxide power cycle’, Energy Conversion and Management. doi: 10.1016/j.en-conman.2017.12.071.
  • 43. Wu, C., Wang, S. sen, Feng, X. jia and Li, J. (2017) ‘Energy, exergy and exergoeconomic analyses of a combined supercritical CO2 recompression Brayton/absorption refrigeration cycle’, Energy Conversion and Management. Elsevier Ltd, 148(September), pp. 360–377. doi: 10.1016/j.enconman.2017.05.042.
  • 44. Wang, E., Yu, Z., Zhang, H. and Yang, F. (no datear) ‘A regenerative supercritical-subcritical dual-loop organic Rankine cycle.pdf’.
  • 45. He, C., Liu, C., Gao, H., Xie, H., Li, Y., Wu, S. and Xu, J. (2012) ‘The optimal evaporation temperature and working fl uids for subcritical organic Rankine cycle’, Energy. Elsevier Ltd, 38(1), pp. 136–143. doi: 10.1016/j.energy.2011.12.022.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b33ee52f-4fd9-4658-ae86-367c242e5f4f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.