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Abstract. A set S of vertices in an isolate-free graph G is a total dominating set if every
vertex in G is adjacent to a vertex in S. A total dominating set of G is minimal if it contains
no total dominating set of G as a proper subset. The upper total domination number Γt(G)
of G is the maximum cardinality of a minimal total dominating set in G. We establish
Nordhaus–Gaddum bounds involving the upper total domination numbers of a graph G and
its complement G. We prove that if G is a graph of order n such that both G and G are
isolate-free, then Γt(G) + Γt(G) ≤ n + 2 and Γt(G)Γt(G) ≤ 1

4 (n + 2)2, and these bounds
are tight.
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1. INTRODUCTION

A set S of vertices in a graph G is a dominating set if every vertex not in S is adjacent
to a vertex in S. Further if every vertex in G is adjacent to some other vertex in S,
then S is a total dominating set, abbreviated TD-set of G. An independent dominating
set, abbreviated ID-set, of G is a dominating set S with the added property that S is
an independent set. Equivalently, an ID-set is a maximal independent set of G. The
domination number γ(G) of G is the minimum cardinality of a dominating set of G,
while the total domination number γt(G) of G is the minimum cardinality of a TD-set
of G. The independent domination number i(G) of G is the minimum cardinality of an
ID-set of G. For recent books on domination in graphs, we refer the reader to [10, 11].

The upper domination number Γ(G) of G is the maximum cardinality of a minimal
dominating set in G, and the upper total domination number Γt(G) of G is the
maximum cardinality of a minimal TD-set in G. A minimal TD-set of cardinality
Γt(G) is called a Γt-set of G. The independence number α(G) of G is the maximum
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cardinality of an independent set in G. By definition of the core domination parameters,
we have

γ(G) ≤ i(G) ≤ α(G) ≤ Γ(G) and γ(G) ≤ γt(G) ≤ Γt(G).

In 1956 Nordhaus and Gaddum [16] established bounds for the sum and product of
the chromatic numbers of a graph G and its complement G. Subsequently, (tight) lower
or upper bounds on the sum or product of a parameter of a graph and its complement
were coined Nordhaus–Gaddum bounds. We refer the reader to the excellent 2013
survey paper on Nordhaus–Gaddum bounds by Aouchiche and Hansen [1].

Nordhaus–Gaddum bounds for the domination number γ(G), the independent
domination number i(G), the independence number α(G), the upper domination
number Γ(G), and the total domination number γt(G) are known, and are presented
in the following papers [3,4,6–9,14,15,17,18]. In this paper, we complete the study by
presenting Nordhaus–Gaddum bounds for the upper domination number Γt(G).

We proceed as follows. In Section 1.1, we present the graph theory notation and
terminology we adopt in this paper. Thereafter, we present known Nordhaus–Gaddum
bounds for γ(G), i(G), α(G), Γ(G), and γt(G) for a graph G in Section 2.
Our main result, which determines tight Nordhaus–Gaddum bounds for the sum
Γt(G) + Γt(G) and the product Γt(G)Γt(G) of the upper total numbers of a graph G
and its complement G, both of which are isolate-free, is given in Section 3.

1.1. GRAPH THEORY NOTATION AND TERMINOLOGY

We generally adopt the notation and graph theory terminology in the book [13].
The order of a graph G with vertex set V (G) and edge set E(G) is denoted by
n(G) = |V (G)| and its size by m(G) = |E(G)|. The open neighborhood of a vertex v
in G, denoted N(v) (or NG(v) to refer to G), is the set {u ∈ V (G) : uv ∈ E(G)}, and
the closed neighborhood of v is the set N [v] = NG[v] = NG(v) ∪ {v}. The degree of
a vertex v in G equals |NG(v)|. An isolated vertex is a vertex of degree 0, and a graph
is isolate-free if it contains no isolated vertex. For a set S ⊆ V (G), the subgraph
induced by S in G is denoted G[S]. If S ⊆ V (G), then the open S-private neighborhood
of a vertex v in S is the set

pn(v, S) = {w ∈ V (G) : NG(w) ∩ S = {v}}.

The set pn(v, S) \ S is the open S-external private neighborhood of v, abbreviated
epn(v, S), while the open S-internal private neighborhood of v is the set ipn(v, S) =
pn(v, S) ∩ S. Thus,

epn(v, S) = pn(v, S) \ S,

ipn(v, S) = pn(v, S) ∩ S,

and
pn(v, S) = ipn(v, S) ∪ epn(v, S).

Our focus in this paper is on total domination in graphs, which deals with open
neighborhoods. Therefore, for notational simplicity we omit the term “open” in the
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above definitions. For example, we refer to the open S-private neighborhood as the
S-private neighborhood. We call a vertex in epn(v, S) an S-external private neighbor
of v, and a vertex in ipn(v, S) we call an S-internal private neighbor of v (where again
we omit the term “open” ).

2. KNOWN RESULTS

The following fundamental property of minimal TD-sets was established in 1980 by
Cockayne, Dawes and Hedetniemi [2].
Lemma 2.1 ([2]). A TD-set S in a graph G is a minimal TD-set in G if and only if
|epn(v, S)| ≥ 1 or |ipn(v, S)| ≥ 1 for every vertex v ∈ S.

In 1972 Jaeger and Payan [15] presented the first Nordhaus–Gaddum bounds
involving the domination number.
Theorem 2.2 ([15]). If G is a graph of order n ≥ 2, then the following inequalities
hold:
a) γ(G) + γ(G) ≤ n + 1,
b) γ(G)γ(G) ≤ n.

Nordhaus–Gaddum bounds involving the sum of the independent domination
numbers of a graph and its complement can be established using a similar proof of
Theorem 2.2 as given in [15]. However, the situation is considerably more complex for
the product of the independent domination numbers. In 2003 Goddard and Henning [7]
determined exactly the maximum possible value for the product i(G)i(G).
Theorem 2.3 ([7, 15]). If G is a graph of order n ≥ 2, then the following inequalities
hold:
a) i(G) + i(G) ≤ n + 1 (see [15]),
b) i(G)i(G) ≤ 1

16 (n + 4)2 (see [7]).
In 2003 Goddard and Henning [7] also determined exactly the maximum possible

value for the sum i(G) + i(G) when both G and G are isolate-free.
Theorem 2.4 ([7]). If G and its complement G are isolate-free graphs of order n,
then

i(G) + i(G) ≤ n + 4 − 2
√

n,

and this is best possible (if one rounds down) for all n (necessarily, n ≥ 4).
Nordhaus–Gaddum bounds on the independence number and upper domination

number were given by Cockayne and Mynhardt [4] in 1989. (We remark that they proved
a stronger result and showed that the same result holds for the upper irredundance
number IR(G), but we do not define this well studied parameter here.)
Theorem 2.5 ([4]). If G is a graph of order n, then the following inequalities hold:
a) α(G) + α(G) ≤ Γ(G) + Γ(G) ≤ n + 1,
b) α(G)α(G) ≤ Γ(G)Γ(G) ≤ 1

4 (n + 1)2.
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Cockayne, Dawes, and Hedetniemi [2] in 1980 provided a Nordhaus–Gaddum upper
bound on the sum of the total domination numbers of a graph and its complement,
while Henning, Joubert, and Southey [14] in 2011 established a Nordhaus–Gaddum
upper bound on the product of the total domination numbers of a graph and its
complement.
Theorem 2.6 ([2, 14]). If G and its complement G are isolate-free graphs of order n,
then following inequalities hold:
a) γt(G) + γt(G) ≤ n + 2 (see [2]),
b) γt(G)γt(G) ≤ 2n (see [14]).

We remark that the bounds given in Theorems 2.2–2.6 are all best possible.
For example, equality holds in the bounds in Theorem 2.6(a) and (b) if and only if G
or G consists of disjoint copies of K2. We summarize these known Nordhaus–Gaddum
bounds for γ(G), i(G), α(G), Γ(G), and γt(G) in Table 1, according to their publication
date.

Table 1
A summary of Nordhaus–Gaddum bounds for γ(G), i(G), α(G), Γ(G), and γt(G)

Year µ µ(G) + µ(G) µ(G)µ(G) Reference

1972 γ(G) n + 1 n [15]

1972 i(G) n + 1 − [15]

1980 γt(G) n + 2 − [2]

1989 α(G) n + 1 1
4 (n + 1)2 [4]

1989 Γ(G) n + 1 1
4 (n + 1)2 [4]

2003 i(G) − 1
16 (n + 4)2 [7]

2011 γt(G) − 2n [14]

Nordhaus–Gaddum upper bounds on the sum and product of the upper total
domination numbers of a graph and its complement have not, to the best of the authors’
knowledge, been presented in the literature before. Our immediate objective in this
paper is therefore to fill this gap, and to complete the study of Nordhaus–Gaddum
bounds for the core domination parameters γ(G), i(G), α(G), Γ(G), γt(G), and Γt(G).

We observe that in 2008 Dorbec, Henning, and Rall [5] showed that the pa-
rameters Γ(G) and Γt(G) are incomparable for isolate-free graphs G, and hence
Nordhaus–Gaddum upper bounds for Γt(G)+Γt(G) and Γt(G)Γt(G) cannot be deduced
from the known Nordhaus–Gaddum upper bounds for Γ(G) + Γ(G) and Γ(G)Γ(G).
Indeed, the following relation between the upper domination and upper total domi-
nation numbers was established in [5], where both the lower and upper bounds are
tight.
Theorem 2.7. ([5]) If G is an isolate-free graph, then ( 2

n−1 )Γ(G) ≤ Γt(G) ≤ 2Γ(G).
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3. MAIN RESULT

In this section, we present Nordhaus–Gaddum upper bounds on the sum Γt(G)+Γt(G)
and the product Γt(G)Γt(G), where G and G are isolate-free. We shall prove the
following result.

Theorem 3.1. If G and its complement G are isolate-free graphs of order n, then the
following inequalities hold:

a) Γt(G) + Γt(G) ≤ n + 2,
b) Γt(G)Γt(G) ≤ ⌊ 1

4 (n + 2)2⌋.

Both bounds are sharp.

Proof. Let X be a Γt-set of G, and let Y be a Γt-set of G. Thus, X is a minimal TD-set
of G satisfying Γt(G) = |X|, and Y is a minimal TD-set of G satisfying Γt(G) = |Y |.
Let |X| = x and |Y | = y. Let S = X ∩ Y and T = V (G) \ (X ∪ Y ). Further, let |S| = s
and |T | = t. We note that X ∪ Y = V (G) \ T , and so x + y − s = n − t. Thus,

x + y = n + (s − t) (3.1)

and
xy = x(n − x + s − t). (3.2)

We proceed further with the following claim.

Claim 3.2. s ≤ t + 2.

Proof. Suppose, to the contrary, that s ≥ t+3. Let S = {v1, v2, . . . , vs}. By supposition,
s ≥ 3. At least one of G[S] and G[S] is connected. We may assume, without loss of
generality, that G[S] is connected. Further, if G[S] is connected, then we may assume,
without loss of generality, that the number of vertices of degree at least 2 in G[S] is
at least as large as the number of vertices of degree at least 2 in G[S]. Since X is
a minimal TD-set of G, by Lemma 2.1, we have |epnG(v, X)| ≥ 1 or |ipnG(v, X)| ≥ 1
for every vertex v ∈ X.

Claim 3.3. If |epnG(v, X)| ≥ 1 for some vertex v ∈ X, then epnG(v, X) ⊆ T .

Proof. Let |epnG(v, X)| ≥ 1 for some vertex v ∈ X and suppose, to the contrary,
that epnG(v, X) ̸⊆ T . Thus, there exists a vertex y /∈ T such that y ∈ epnG(v, X).
Necessarily, y ∈ Y \ S. We now consider the complement G. The vertex y is adjacent
to every vertex of X \ {v} in G, and the vertex v is the only vertex in X that is not
adjacent to y in G.
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Suppose firstly that v ∈ S. In this case, the vertex y is adjacent to every vertex of
S \ {v} and |S \ {v}| = s − 1 ≥ 2. Since Y is a minimal TD-set of G, by Lemma 2.1,
we have |epnG(u, Y )| ≥ 1 or |ipnG(u, Y )| ≥ 1 for every vertex u ∈ Y . In particular,
|epnG(u, Y )| ≥ 1 or |ipnG(u, Y )| ≥ 1 for every vertex u ∈ S. If |epnG(u, Y )| ≥ 1
for some vertex u ∈ S, then epnG(u, Y ) ⊆ T since y dominates the set X \ S

in G. If |ipnG(u, Y )| ≥ 1 for some vertex u ∈ S, then either v ∈ ipnG(u, Y ) or
ipnG(u, Y ) ⊆ Y \ {y} since s ≥ 3 and y dominates the set S \ {v} in G. Moreover, if
z ∈ ipnG(u, Y ) and z ∈ Y \ {y}, then |epnG(z, Y )| ≥ 1 and we can uniquely associate
the set epnG(z, Y ) with the vertex u. As observed earlier, since y dominates the set
X \ S, in this case, we must have epnG(z, Y ) ⊆ T . We note that at most one vertex in
S \{v} has the vertex v as a Y -internal private neighbor in G. Further, we can uniquely
associate with each vertex in S \ {v} at least one vertex in T . These observations
imply that we can associate at least s − 2 vertices of T with the vertices in the set S,
implying that t = |T | ≥ s − 2, a contradiction.

Suppose secondly that v ∈ X \ S. In this case, the vertex y is adjacent to every
vertex of X \ {v}. In particular, the vertex y is adjacent to every vertex of S. As
in the previous paragraph, |epnG(u, Y )| ≥ 1 or |ipnG(u, Y )| ≥ 1 for every vertex
u ∈ S. At most one vertex in the set Y has the vertex v as a Y -external private
neighbor in G. For all other vertices w that belong to Y and satisfy |epnG(w, Y )| ≥ 1,
we have epnG(w, Y ) ⊆ T . If w ∈ S and |ipnG(w, Y )| ≥ 1, then since y dominates
the set S in G, we note that ipnG(w, Y ) ⊆ Y \ S. In this case, if w′ ∈ ipnG(w, Y ),
then |epnG(w′, Y )| ≥ 1. Furthermore, if v /∈ epnG(w′, Y ), then epnG(w′, Y ) ⊆ T
and we can uniquely associate the set epnG(w′, Y ) with the vertex w ∈ S. These
observations imply that we can associate at least s − 1 vertices of T with the vertices
in the set S, implying that t = |T | ≥ s − 1, a contradiction.

By Claim 3.3, if |epnG(v, X)| ≥ 1 for some vertex v ∈ X, then epnG(v, X) ⊆ T .
As observed earlier, |epnG(v, X)| ≥ 1 or |ipnG(v, X)| ≥ 1 for every vertex v ∈ X. Let

S1 = {v ∈ S : |epnG(v, X)| ≥ 1} and S2 = S \ S1.

We note that
S = S1 ∪ S2.

If v ∈ S2, then epnG(v, X) = ∅, and so by Lemma 2.1, we have ipnG(v, X) ̸= ∅.
Further, we note that if u ∈ ipnG(v, X) for some vertex v ∈ X, then the vertex v is
the unique neighbor of u in G[X], that is, the vertex u has degree 1 in G[X].

Claim 3.4. If v ∈ S2, then ipnG(v, X) ∩ S2 = ∅.

Proof. Let v ∈ S2 and suppose, to the contrary, that ipnG(v, X) ∩ S2 ≠ ∅. Thus,
epnG(v, X) = ∅ and there is an X-internal private neighbor of v in G that belongs
to the set S2. Let u be such a neighbor of v. Thus, u ∈ ipnG(v, X) and u ∈ S2,
and so the vertex u has degree 1 in G[X] with v as its only neighbor in G[X]. Since
epnG(u, X) = ∅, by the minimality of the set X, we have ipnG(u, X) ̸= ∅, implying that
ipnG(u, X) = {v} and that the vertex v has degree 1 in G[X]. Thus, the vertices u and
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v form a K2-component in the subgraph G[X], and therefore also in the subgraph G[S].
Since |S| = s ≥ 3, the subgraph G[S] is therefore disconnected, a contradiction.

Let

S2,1 = {v ∈ S2 : |ipnG(v, X) ∩ S1| ≥ 1},

S2,2 = {v ∈ S2 : ipnG(v, X) ⊆ X \ S}.

By Claim 3.4, if v ∈ S2, then ipnG(v, X) ∩ S2 = ∅, and so

S2 = S2,1 ∪ S2,2.

For each vertex v ∈ S1, we have |epnG(v, X)| ≥ 1. By Claim 3.3, epnG(v, X) ⊆ T .
We uniquely associate the set epnG(v, X) with the vertex v.

Suppose that S2,2 ̸= ∅, and consider a vertex v ∈ S2,2. Let u ∈ ipnG(v, X), and
so u ∈ X \ S. By Lemma 2.1, we have |epnG(u, X)| ≥ 1 or |ipnG(u, X)| ≥ 1. If
epnG(u, X) = ∅, then it follows that ipnG(u, X) = {v} and that the vertex v has
degree 1 in G[X]. But this implies that v is an isolated vertex in G[S], a contra-
diction since |S| ≥ 3 and G[S] is connected. Hence, epnG(u, X) ̸= ∅. By Claim 3.3,
epnG(u, X) ⊆ T . We now uniquely associate the set epnG(u, X) with the vertex
v ∈ S2,2.

Let WS be the set of all X-external private neighbors in G that are associated with
vertices that belong to the set S1 ∪ S2,2. Hence, if w ∈ WS , then either w ∈ epnG(v, X)
for some vertex x ∈ S1 or w ∈ epnG(u, X) for some vertex u ∈ X \ S that is adjacent
to the vertex v ∈ S2,2. We note that WS ⊆ T and

|WS | ≥ |S1| + |S2,2| = s − |S2,1|.

By supposition, s ≥ t + 3, and so

s − 3 ≥ t = |T | ≥ |WS | ≥ s − |S2,1|,

implying that |S2,1| ≥ 3. Let {u1, u2, u3} ⊆ S2,1 and let vi ∈ ipnG(v, X)∩S1 for i ∈ [3].
By our earlier observations, the vertex vi has degree 1 in G[X] with the vertex ui

as its unique neighbor in G[X] for i ∈ [3]. We now consider the complement G. The
vertex vi is adjacent to every vertex of X \ {ui} in G for all i ∈ [3]. These observations
imply that G[S] is a connected graph and all s vertices in the set S have degree at
least 2 in G[S]. However, G[S] is a connected graph with at least three vertices of
degree 1 in G[S], and therefore at most s − 3 vertices of degree at least 2 in G[S]. This
contradicts our assumption that if both G[S] and G[S] are connected graphs, then
there are at least as many vertices of degree at least 2 in G[S] as in G[S]. We deduce,
therefore, that our supposition that s ≥ t + 3 is incorrect, that is, s ≤ t + 2, which
completes the proof of Claim 3.2.

By Claim 3.2, s ≤ t + 2. By Equation (3.1), we have

Γt(G) + Γt(G) = x + y = n + (s − t) ≤ n + 2.
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This proves Part a). To prove Part b), by Part a) and Equation (3.2), we have

xy = x(n − x + s − t) ≤ x(n − x + 2).

Using elementary calculus, the function x(n − x + 2) is maximized when x = 1
2 (n + 2),

yielding
Γt(G)Γt(G) = xy ≤ 1

4(n + 2)2. (3.3)

Since Γt(G) and Γt(G) are integral, the upper bound in Part (b) now follows.
To show that the bounds are sharp, we note that if G is the disjoint union of k ≥ 2

copies of K2, that is, if G = kK2, then G has order n = 2k and Γt(G) = 2k and
Γt(G) = 2, and so Γt(G) + Γt(G) = n + 2. Thus, the bound in Part (a) on the sum of
the upper total domination numbers of a graph and its complement is sharp.

To construct an extremal graph for the product of the upper total domination
numbers of a graph and its complement that achieves the bound in Part (b), let k ≥ 2
be an integer and let G be a graph of order n = 4k + 2 with V (G) partitioned into sets
V1 and V2, where |V1| = 2k + 2 and |V2| = 2k. The edge set of G is defined as follows.
Let G[V1] ∼= K2k+2 − M1, where M1 is a perfect matching in the complete graph
K2k+2 with vertex set V1, and let G[V2] = kK2. We note that the vertices in V2 have
degree 1 in G. Equivalently, in the complement G of G, we have G[V1] = (k + 1)K2
and G[V2] ∼= K2k − M2, where M2 is a perfect matching in the complete graph K2k

with vertex set V2. Further, all edges between the vertices V1 and the vertices V2 are
present in G. The set D2 = V2 ∪ {u1, v1} is a Γt-set in G, where u1 and v1 are any
two vertices in V1 that are adjacent in G. We note that G[D2] = (k + 1)K2. Moreover,
the set V1 is a Γt-set in G. Thus,

Γt(G) = |D2| = 2(k + 1) and Γt(G) = |V1| = 2(k + 1),

and so, in this example,

Γt(G)Γt(G) = 4(k + 1)2 = 1
4(n + 2)2.
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