PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physical and mechanical properties of dune sand mortar reinforced with recycled pet fiber: an experimental study

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Polyethylene terephthalate is a synthetic material known as PET. PET strapping bands is a material commonly used in all industries for packaging and bundling. The excessive use of this material has led to the pollution of the urban environment, which necessitated the search for effective solutions to dispose of this waste. The treatment and reuse of these materials is among the best solutions that contribute to reducing environmental pollution on the one hand and enabling the obtaining of economical products on the other hand. The main purpose of this experimental study is to valorize dune sand mortar and PET waste in the manufacture of cement mortar. It also aims to investigate the impact of the inclusion of recycled PET fibers on the physical and mechanical properties of the reinforced mortar. The study was carried out in several phases; after a physical and chemical characterization of the materials used, a method for the composition of mixtures was proposed, which is based on the progressive substitution of dune sand by recycled PET fibers. The quantity of cement added to each mixture is fixed at 450 g, and that of dune sand and fibers is taken as equal to 1350 g. In order to properly examine the influence of the incorporation of fibers on the properties of the reinforced mortar, the substitution rate of dune sand by the fibers varied from 0% to 2.5% with a step of 0.5%. For each mixture, many characteristics of the mortar were tested, such as consistency, bulk density, compressive strength, and flexural strength. The results obtained show that the incorporation of PET fibers has a significant effect on the fresh and hardened properties of the treated mortar.
Rocznik
Strony
41--56
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
  • Mechanical and Materials Development Laboratory, University Ziane Achour, 17000, Djelfa, Algeria
  • Department of Civil Engineering, University Ziane Achour, 17000, Djelfa, Algeria
  • Department of Civil Engineering, University Ziane Achour, 17000, Djelfa, Algeria
Bibliografia
  • 1. Y.W. Choi, D.J. Moon, Y.J. Kim, M. Lachemi, Characteristics of mortar and concrete containing fine aggregate manufactured from recycled waste polyethylene terephthalate bottles, Construction and Building Materials. 23 (2009) 2829–2835.
  • 2. K. Hannawi, S. Kamali-Bernard, W. Prince, Physical and mechanical properties of mortars containing PET and PC waste aggregates, Waste Management. 30 (2010) 2312–2320.
  • 3. J.M.L. Reis, E.P. Carneiro, Evaluation of PET waste aggregates in polymer mortars, Construction and Building Materials. 27 (2012) 107–111.
  • 4. S. Akçaozoǧlu, C. Ulu, Recycling of waste PET granules as aggregate in alkaliactivated blast furnace slag/metakaolin blends, Construction and Building Materials. 58 (2014) 31–37.
  • 5. F.A. Spósito, R.T. Higuti, M.M. Tashima, J.L. Akasaki, J.L.P. Melges, C.C. Assunção, M. Bortoletto, R.G. Silva, C.F. Fioriti, Incorporation of PET wastes in rendering mortars based on Portland cement/hydrated lime, Journal of Building Engineering. 32 (2020) 101506.
  • 6. M. Hacini, A.S. Benosman, N.K. Tani, M. Mouli, Y. Senhadji, A. Badache, N. Latroch, Utilization and assessment of recycled Polyethylene Terephthalate strapping bands as lightweight aggregates in Eco-efficient composite mortars. Construction and Building Materials. 270 (2021) 121427.
  • 7. Y. Choi, D. Moon, J. Chung, S. Cho, Effects of waste PET bottles aggregate on the properties of concrete, Cement and Concrete Research. 35 (2005) 776–781.
  • 8. A. Sadrmomtazi, S. Dolati-Milehsara, O. Lot, A. Sadeghi-Nik, The combined effects of waste Polyethylene Terephthalate (PET) particles and pozzolanic materials on the properties of self- compacting concrete, Journal of Cleaner Production. 112 (2016) 2363–2373.
  • 9. E. Rahmani, M. Dehestani, M.H.A. Beygi, H. Allahyari, I.M. Nikbin, On the mechanical properties of concrete containing waste PET particles, Construction and Building Materials. 47 (2013) 1302–1308.
  • 10. F. Fraternali, S. Spadea, V.P. Berardi, Effects of recycled PET fibres on the mechanical properties and seawater curing of Portland cement-based concretes, Construction and Building Materials. 61 (2014) 293–302.
  • 11. R. Tang, Q. Wei, K. Zhang, S. Jiang, Z. Shen, Y. Zhang, C.W.K. Chow. Preparation and performance analysis of recycled PET fiber reinforced recycled foamed concrete. Journal of Building Engineering. 57 (2022) 104948A.
  • 12. H. Alani, M. A.M. Johari, A.T. Noaman, N.M. Bunnori, T.A. Majid, Effect of the incorporation of PET fiber and ternary blended binder on the flexural and tensile behaviour of ultra-high performance green concrete, Construction and Building Materials. 331 (2022) 127306.
  • 13. A.A. Mohammed, A.A.F. Rahim, Experimental behavior and analysis of high strength concrete beams reinforced with PET waste fiber, Construction and Building Materials. 244 (2020) 118350.
  • 14. L.A. Pereira de Oliveira, João P. Castro-Gomes, Physical and mechanical behaviour of recycled PET fibre reinforced mortar, Construction and Building Materials. 25 (2011) 1712-1717.
  • 15. M. Małek, M. Jackowski, W. Łasica, M. Kadela, Characteristics of recycled polypropylene fibers as an addition to concrete fabrication based on Portland cement, Materials. 13 (2020) 1827.
  • 16. F. Alrshoudi, H. Mohammadhosseini, M.M. Tahir, R. Alyousef, H. Alghamdi, Y. Alharbi, A. Alsaif, Drying shrinkage and creep properties of prepacked aggregate concrete reinforced with waste polypropylene fibers, Journal of Building Engineering. 32 (2020) 101522.
  • 17. J. Thorneycroft, J. Orr, P. Savoikar, R. Ball, Performance of structural concrete with recycled plastic waste as a partial replacement for sand, Construction and Building Materials. 161 (2018) 63–69.
  • 18. I. Almeshal, B.A. Tayeh, R. Alyousef, H. Alabduljabbar, A.M. Mohamed, Ecofriendly concrete containing recycled plastic as partial replacement for sand, Journal of Materials Research and Technology. 9 (3) (2020) 4631–4643.
  • 19. AFNOR standards organisation. Méthodes d'essais des ciments - Partie 1: détermination des résistances mécaniques. NF EN 196-1 (2006).
  • 20. S. Guettala, B. Mezghiche, M. Mellas, Influence of addition dune sand powder to cement, on the properties physical-mechanical and deformability of concrete, Asian Journal of Civil Engineering (Building and Housing). 13 (6) (2012) 765-781.
  • 21. M. Liu, Y. Hu, Z. Lai, T. Yan, X. He, J. Wu, Z. Lu, S. Lv, Influence of various bentonites on the mechanical properties and impermeability of cement mortars, Construction and Building Materials. 241 (2020) 118015.
  • 22. H. Zanni, M. Cheyrezy, V. Maret, S. Philippot, P. Nieto, Investigation of hydration and pozzolanic reaction in reactive powder concrete (RPC) using 29 Si NMR, Cement and Concrete Research. 26 (1) (1996) 93–100.
  • 23. J. Du, W. Meng, K.H. Khayat, Y. Bao, P. Guo, Z. Lyu, A. Abu-obeidah, H. Nassif, H. Wang, New development of ultra-high-performance concrete (UHPC), Composites Part B: Engineering. 224 (2021) 109220.
  • 24. A.H. Alani, M.A.M. Johari, A.T. Noaman, N.M. Bunnori, T.A. Majid. Effect of the incorporation of PET fiber and ternary blended binder on the flexural and tensile behaviour of ultra-high performance green concrete, Construction and Building Materials. 331 (2022) 127306.
  • 25. AFNOR standards organisation. Bétons - Mesure du temps d'écoulement des bétons et des mortiers aux maniabilimètres NF 18-452 (1988).
  • 26. AFNOR standards organisation. Méthodes d'essai des mortiers pour maçonnerie - Partie 6: Détermination de la masse volumique apparente du mortier frais. NF EN 1015-6 (1999).
  • 27. AFNOR standards organisation. Méthodes d'essai des mortiers pour maçonnerie - Partie 10: détermination de la masse volumique apparente sèche du mortier durci. NF EN 1015-10 (2000).
  • 28. AFNOR standards organisation. Méthodes d'essai des mortiers pour maçonnerie - Partie 18: détermination du coefficient d'absorption d'eau par capillarité du mortier durci. NF EN 1015-18 (2003).
  • 29. American society for testing material. Standard Test Method for Pulse Velocity Through Concrete. ASTM C597-02 (2010).
  • 30. M. Malešev, V. Radonjanin, I. Lukić, V. Bulatović, The effect of aggregate, type and quantity of cement on modulus of elasticity of lightweight aggregate concrete, Arabian Journal for Science and Engineering. 39 (2) (2014) 705–711.
  • 31. T. Gupta, S. Chaudhary, R.K. Sharma, Mechanical and durability properties of waste rubber fiber concrete with and without silica fume, Journal of Cleaner Production. 112 (1) (2016) 702-711.
  • 32. M.B. Leite, J.G.L. Figueire do Filho, P.R.L. Lima, Workability study of concretes made with recycled mortar aggregate, Materials and Structures. 46 (2013) 1765–1778.
  • 33. İ.B. Topçu, S. Şengel, Properties of concretes produced with waste concrete aggregate, Cement and Concrete Research. 34 (2004) 1307–1312.
  • 34. T. Felixkala, P. Partheeban, Granite powder concrete, Indian Journal of Science and Technology. 3(3) (2010) 311–317.
  • 35. Z. Laidani, Y. Ouldkhaoua, M. Sahraoui, B. Benabed, Feasibility of marble powder and calcined bentonite in SCM as partial substitution of cement for sustainable production Építőanyag – Journal of Silicate Based and Composite Materials. 74 (2022) 61–66.
  • 36. C.B. Farinha, J. de Brito, R. Veiga, Incorporation of high contents of textile, acrylic and glass waste fibres in cement-based mortars. Influence on mortars’ fresh, mechanical and deformability behavior, Construction and Building Materials. 303 (2021) 124424.
  • 37. T. Ochi, S. Okubo, K. Fukui, Development of recycled PET fiber and its application as concrete-reinforcing fiber, Cement and Concrete Composites. 29 (6) (2007) 448–455.
  • 38. R. Tang, Q. Wei, K. Zhang, S. Jiang, Z. Shen, Y. Zhang, C.W.K. Chow, Preparation and performance analysis of recycled PET fiber reinforced recycled foamed concrete, Journal of Building Engineering. 57 (2022) 104948.
  • 39. D. Niu, L.i. Su, Y. Luo, D. Huang, D. Luo, Experimental study on mechanical properties and durability of basalt fiber reinforced coral aggregate concrete, Construction and Building Materials. 237 (2020) 117628.
  • 40. X.U.E. Weipei, L.I.U. Xiaoyuan, Y.A.O. Zhishu, H. Cheng, L.I. Haopeng, Effects of different damage sources on pore structure change characteristics of basalt fiber reinforced concrete, Journal of Composite Materials. 37 (9) (2020) 2285-2293.
  • 41. D. Niu, D. Huang, Q. Fu, Experimental investigation on compressive strength and chloride permeability of fiber-reinforced concrete with basalt-polypropylene fibers, Advances in Structural Engineering. 22 (2019) 2278–2288.
  • 42. D. Wang, Y. Ju, H. Shen, L. Xu, Mechanical properties of high performance concrete reinforced with basalt fiber and polypropylene fiber, Construction and Building Materials. 197 (2019) 464–473.
  • 43. Y. Yao, B. Wang, Y. Zhuge, Z. Huang, Properties of hybrid basalt-polypropylene fiber reinforced mortar at different temperatures, Construction and Building Materials. 346 (2022) 128433.
  • 44. A. Toghroli, P. Mehrabi, M. Shariati, N.T. Trung, S. Jahandari, H. Rasekh, Evaluating the use of recycled concrete aggregate and pozzolanic additives in fiber-reinforced pervious concrete with industrial and recycled fibers, Construction and Building Materials. 252 (2020) 118997.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b33ba5d9-a014-4ca4-aff0-49d9d1dcffb5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.