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Abstract—Situation awareness is an important aspect of ubiq-
uitous computer systems, as these systems of systems are highly
integrated with the physical world and for successful operation
they must maintain high awareness of the environment. Acoustic
information is one of the most popular modalities, by which
the environment states are estimated. Multi-sensor approaches
also provide the possibility for acoustic source localization. This
paper considers an acoustic localization system of dual channel
smart sensors interconnected through a Wireless Sensor Network
(WSN). The low computational power of smart sensor devices
requires distribution of localization tasks among WSN nodes.
The Initial Search Region Reduction (ISRR) method is used
in the WSN to meet this requirement. ISRR, as opposed to
conventional localization methods, performs significantly less
complex computations and does not require exchange of raw
signal between nodes. The system is implemented on smart
dust motes utilizing Atmel ATmega128RFA1 processors with
integrated 2.4GHz IEEE 802.15.4 compliant radio transceivers.
The paper discusses complications introduced by low power
hardware and ad-hoc networking, and also reviews conditions
of real-time operation.

Index Terms—Acoustic localization, Wireless Sensor Networks,
Direction of Arrival, smart dust, distributed computing.

I. INTRODUCTION

THE continuous process of computer systems integration

into all aspects of everyday life paves the way for

cyber-physical systems with diverse abilities for interfacing

with human operators and the environment, in which these

systems exist. Future Internet of Things applications are also

envisioned to be ubiquitous systems, which must maintain

good situation awareness in order to be able to provide the

expected services proactively. Situation awareness is achieved

by constant analysis of environment states by sensing different

modalities (e.g. acoustic, video, vibration, magnetic, etc.) and

sophisticated decision-making through data fusion and system

component cooperation. One of the most popular modalities

for the majority of environments and human-machine inter-

action is acoustic signals. Acoustic information is widespread

and may be acquired during various physical processes accom-

panied by sound emission and during human speech analysis.

Acoustic signal analysis has been applied for a great variety

of tasks concerning both environment monitoring and human-

machine interfaces (HMI). Applications for open environments
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span from traffic monitoring [1] and military reconnaissance

[2] to monitoring woodland and aquatic wildlife [3]. For

confined environments the main applications are person and

process monitoring, raging from home automation [4] and

security systems [5] to industrial process control [6]. The

majority of monitoring tasks assume pattern matching and

classification and use single-sensor solutions. Single channel

information is sufficient for low-noise environments with a

well defined list of expected events and signal patterns (e.g.

HMI with a finite list of voice commands). For the majority

of open environments, however, multi-sensor systems are

beneficial from several standpoints. Firstly, the monitored area

is observed from multiple points of view, which provides more

information than a single-sensor system. Secondly, if joint

analysis is applied, position of the acoustic source may be

localized in observed space. Thirdly, if localization is possible,

the sound emitted by a specific source may be filtered from

sounds incoming from other directions via beamforming.

The advantages of multi-sensor acoustic systems are even

more evident if implemented in Wireless Sensor Networks

(WSN). Compact sensor network solutions allow to widen

the ordinary localization techniques with more complex multi-

node source detection and recognition solutions, e.g. [7]–[10].

A WSN consists of several smart sensor nodes distributed in

the observed environment and communicating with each other.

The aggregate of local measurements from single nodes can

be used to generate a global assessment of the situation. The

downside of WSN application is low computational power

of sensor nodes. In order to ensure the small size of smart

sensors and the longevity of their power supplies, the hardware

used in even modern smart sensors is quite limited in terms

of computational power. However, these limitations may be

overcome to a certain extent through node cooperation and

distributed computations.

In this paper we consider a localization approach of Initial

Search Region Reduction (ISRR), previously developed by our

research group [11], [12], and its implementation in WSN.

In our work we use smart sensors of particularly small size

and low computational power, known as smart dust motes.

Low power imposes many restrictions on signal acquisition

and processing, e.g. low sampling rates, limited memory. The

paper addresses these restrictions and proposes a system ar-

chitecture for workload distribution, as well as discusses inter-

node communication problems and system real-time operation

capabilities. The decrease in localization quality resulting from

the sampling rate decrease is demonstrated on a practical

example of single speaker localization performed on an eight

sensor system.



Fig. 1. Schematic diagram of proposed WSN architecture.

II. DISTRIBUTED LOCALIZATION IN WSN

The WSN system is designed for localizing grounded acous-

tic sources. The motes are placed in the monitored environ-

ment in the horizontal plane and localization is performed by

estimating the coordinates (x, y) of sound emitting objects.

Each mote is equipped with two acoustic sensors spaced by

a specific distance l from one another. Localization is based

on estimating the time delays of acoustic wave arrival to the

sensors, also called Time Difference of Arrival (TDOA). The

Direction of Arrival (DOA) of sound from a specific acoustic

source is calculated using TDOA. The whole localization

system consists of a large number of motes, each one of

which plays its specific role in the localization process. This

section presents the proposed WSN architecture along with

the distributed approach to localization.

A. WSN Architecture

The proposed WSN architecture is designed for applications

in both open (urban, woodland, etc.) and confined (home,

office, industrial facility, etc.) environments. The network

consists of two types of motes: smart sensors and fusion nodes.

Dual channel smart sensors acquire acoustic information and

perform DOA estimation. Fusion nodes gather DOA estimates

and perform further steps of localization, which are discussed

in Section II-C. The schematic diagram of the architecture is

presented in Fig. 1.

The sensor motes are dispersed in the monitored environ-

ment either in an orderly or random fashion. In confined

environments an orderly placement is more likely, because

sensors are usually mounted on room walls or ceilings. In open

environments, however, its is rarely the case — the sensors

may be attached to buildings, light posts, trash bins, etc. in

urban and to trees, rocks, etc. in natural environments. Thus a

general case is assumed, where the sensor’s location is defined

by the coordinates of its point of reference (xr, yr) and the

angle α, by which the sensor is steered from the global angle

reference. For example, sensor location may be estimated via

the Global Positioning System (GPS), in which case the point

of reference is the GPS unit. For environments, where GPS

signals are unavailable, other location algorithms based on

Radio Frequency (RF) [13] or sound [14] may be adopted. The

global angle reference may be defined by Earth’s magnetic

field and the angle α estimated using a magnetometer. The

central point of the microphone pair (x0, y0), for which the

DOA is actually estimated, is defined by the reference point

(xr, yr) and may coincide with it. The coordinates of the i-
th microphone (xi, yi) are shifted by ±l/2 from (x0, y0) and

then the steering by α is performed as(
x
(rot)
i

y
(rot)
i

)
=

(
x0

y0

)
+

(
cos(α) − sin(α)
sin(α) cos(α)

)(
xi − x0

yi − y0

)
. (1)

Sensor motes are partitioned into groups, where a single

mote can belong to any number of groups. Each group must

have a common Field of View (FOV), i.e. all motes observe the

same area. The whole network may consist of several groups

or each group can constitute a separate sub-network. Group

partitioning is in essence a clustering task, for which two

aspects are taken into consideration. Firstly, motes must have a

common field of view as the considered localization procedure

uses a directional approach. In this regard, the observed area

is not necessarily enclosed by motes, as shown in Fig. 1, but

may be observed from one or several sides. Secondly, a group

must have certain homogeneity. Motes located too far from the

group’s centroid may be useless to the localization effort in low

Signal to Noise Ratio (SNR) environments or when the sound

emitted by the source of interest is too weak. Furthermore,

non-homogeneous groups present additional challenges for

wireless communication.

Fusion nodes of the WSN perform mote grouping during

network initialization and later participate in localization. For

an orderly configuration of motes a single fusion node may

be assigned to coordinate the activity of the whole WSN. In

a random configuration each sensor mote may be a part of

several groups and each group may be governed by several

fusion nodes. In order to ensure coverage of all groups, fusion

nodes reach an agreement concerning which node will govern

which mote group. In this process communication signal

strength is taken into account, meaning that a fusion node

will adopt a group, to which it has the strongest connection.

However, if there exists an ungoverned group, a redundant

(i.e. covering an already covered group) fusion node closest

to it will switch to that group. Mote communication is further

discussed in Section III-C.

B. Acoustic Source Localization

Acoustic localization consists of estimating the DOA and

distance to the sound source. DOA, in turn, consists of

estimating the Angle of Arrival (AOA) and elevation of the

acoustic wave front. As we operate only in the horizontal

plane, we assume zero elevation, and thus for DOA estimation

only the AOA is needed to be computed. The AOA, as it was

mentioned earlier, is calculated based on TDOA. In choosing

the trigonometric approach to AOA calculation an assumption

of near or far field source location must be made. As sound

waves propagate spherically, wave front curvature must be



accounted for in the calculations. The near field disposition

assumes spherical fronts, whereas waves originating in the far

field are spread enough by the time they reach the sensor to be

considered linear. The far field assumption is met for a linear

microphone array if the inequality

|r| > 2 (Md)
2

λmin
(2)

holds, where M is the number of microphones, d is the inter-

microphone distance, λmin is the minimal wave length of the

wide-band acoustic signal and r is the radial distance from the

array center to the source. For our implementation we assume

the far field disposition.

There exists a variety of methods for acoustic localization,

most of which also employ TDOA as a basic principal.

The methods utilize sensor array structures, in which a large

number of microphones is arranged in some specific manner

(e.g. linear, tetrahedron, spherical, etc.). The TDOA and con-

sequently DOA is generally estimated using some measure

of correlation between different sensor signals. For example

a popular method of Steered Response Power with Phase

Transform (SRP-PHAT) computes cross-correlation across all

pairs of microphones at the theoretical time delays associated

with all possible DOA to estimate the cumulative signal

energy for each discrete point of the FOV [15]. MUltiple

SIgnal Classification (MUSIC) applies eigenspace analysis

to the signal correlation matrix in order to get the largest

eigenvalues corresponding to the most probable DOA [16].

Multilateration methods estimate distances from every sensor

to the source and calculate the position of that source using

geometry of triangles and circles (spheres for 3D cases).

Distance estimation is usually based on TDOA [17].

Notice that typical acoustic localization methods utilize

information from every sensor. This fact does not pose a

problem for wired systems with a single powerful compu-

tational hub. In WSN, however, collecting raw signals from

nodes is a real challenge, especially if the number of nodes

is large and signal frames are long. Recent developments in

distributed localization combine individual sensor estimates

for source positioning by applying, for example, maximum

likelihood iterative search [18], or fuzzy clustering [19]. We try

to overcome problems associated with communicating signal

frames by applying a simplified localization approach of Initial

Search Region Reduction (ISRR), recently developed by our

research group.

C. Initial Search Region Reduction in WSN

The main idea behind ISRR lies in maximally confining

the region of acoustic source disposition as a preliminary

procedure to SRP-PHAT or other localization method [12].

Having already established that SRP-PHAT requires raw in-

formation from all sensors in the network, we do not apply it

for this specific implementation. For object or person moni-

toring applications, where localization to a single point is not

obligatory, ISRR confined regions serve as a sufficient estimate

of object location. This section presents ISRR for the specific

implementation of dual sensor mote WSN.

Fig. 2. DOA estimation for a pair of microphones.

Having a group of K dual sensor motes, the ISRR is

performed in the following steps:

1) Estimate the DOA for each of K motes.

2) Generate vectors spanning from the mote sensor pair

centers to the bounds of the FOV in the directions of

DOA.

3) Find points of intersections of these vectors.

4) Find groups of points no farther than Dmax distance units

(meters) from their centroid and enclose the areas, in

which these groups reside, in rectangles.

5) Perform control of false detection, discard areas not

meeting specific criteria (optional).

Step 1 is performed on each sensor mote, steps 2–5 are

performed on the group’s fusion node.
The DOA are estimated for the front view of the sensor

pair, i.e. from −90◦ to 90◦. Considering Fig. 2, the sound

wave emitted by a source in the far field is acquired by the

microphones m1 and m2 with a time delay τ = Δd/c, where

c is the speed of sound in m/s. The delay takes the values

τ ∈ [−τmax, τmax], where τmax is the delay of sound traveling

directly from one microphone to the other (i.e. at ±90◦). To

estimate τ we apply cross-correlation to the two signals:

R(τ) =
n−1∑
k=0

xm1
(k) · xm2

(k − τ), (3)

where n is the length of the signals in samples. The maximum

of the cross-correlation defines the time delay, and the AOA

is obtained by

ϕ = sin−1 τ · c
l

= sin−1 Δk/fs · c
l

, (4)

where l is the distance between the microphones and τ is

represented in terms of delay in samples Δk and the sampling

frequency fs. The speed of sound in air is dependent on the

ambient temperature and is equal to

c = 331.45
√

1 + θ/273, (5)

where θ is the air temperature in Celsius.
At this point AOA validation is performed. If the correlation

peak is not sharp and outstanding enough, the AOA ϕ is

discarded. This way, in absence of a sound source or in case

of high ambient noise, invalid estimates are avoided early on.

We use the deviation from the mean for this metric:

max (R(τ)) > (1 + TH) ·R(τ), (6)



where TH is the threshold of deviation, which depends on

the SNR in the environment. We use TH = 0.2 in our

experiments. The angles ϕ from every mote are sent as DOA

estimates to the fusion node.

The fusion node receives K1 ≤ K DOA estimates φi∗ , i∗ ∈
(1, . . . ,K1) and adds the mote’s rotation angles αi to them.

Vectors
−−→
ABi∗ are computed with the starting point Ai∗ =

(x1,i∗ , y1,i∗) being the coordinate of i∗-th sensor pair’s center

and the ending point Bi∗ = (x2,i∗ , y2,i∗) being the point at

a bound of the FOV steered by φi∗ from the pair’s center.

Intersection points of all pairs
−−→
ABh,

−−→
ABk are calculated by

Ihk = (Ix, Iy) =(
(x1,hy2,h−y1,hx2,h)(x1,k−x2,k)−(x1,h−x2,h)(x1,ky2,k−y1,kx2,k)

(x1,h−x2,h)(y1,k−y2,k)−(y1,h−y2,h)(x1,k−x2,k)
,

(x1,hy2,h−y1,hx2,h)(y1,k−y2,k)−(y1,h−y2,h)(x1,ky2,k−y1,kx2,k)
(x1,h−x2,h)(y1,k−y2,k)−(y1,h−y2,h)(x1,k−x2,k)

)
.

(7)

As a result we have a set of Ii∗∗ intersections, i∗∗ ∈
(1, . . . ,K2), K2 ≤

(
K1

2

)
. To get the initial search areas, these

intersection points are partitioned by their relative distance. For

the maximum distance Dmax the partitioning is performed in

the following manner:

1) IF no points I = ∅ THEN no partitions, P = ∅ STOP
2) ELSE IF only 1 point I1 THEN P1 = I1 STOP
3) ELSE number of partitions j = 0
4) WHILE |I| > 0, where |I| is the cardinality of the set I,

calculate centroid of free points CI = 1/|I|·∑ I.
5) Calculate Euclidean distance of all free points to centroid

Dk =
√∑

s=1,2 (Ik,s − CI,s)
2
, choose point with mini-

mal distance, j = j+1, insert point to Pj , remove point

from set of free points I.
6) Calculate partition centroid CPj

= 1/|Pj | · ∑Pj ,

get Euclidean distance for all free points Dk =√∑
s=1,2

(
Ik,s − CPj ,s

)2
.

7) IF min(D) ≤ Dmax THEN insert point corresponding

to min(D) into Pj , delete point from set of free points

I, GO TO Step 6.

8) ELSE IF |I| > 1 THEN GO TO Step 4.

9) ELSE j = j + 1, put last remaining point to Pj .

After obtaining the partitions P, their areas are enclosed by

rectangles with the edges denoted by the partitions lowest

leftmost and highest rightmost points. As a result several

regions may occur in the same FOV. Also while a vector

from one array may cross with several other vectors, redundant

’echoing’ regions may arise. These can be removed by apply-

ing SRP-PHAT to every region and comparing SRP values, or

by using tracking filters. This work, however, does not focus

on redundant region removal.

The procedure is applicable to multiple target localization. If

more than two sensors are used in the array, several AOA may

be estimated [12]. Each dual channel mote, however, points to

a single direction of the strongest acoustic source. As sound

pressure decreases exponentially with propagation, each mote

group identifies a source closest to it. If a group is well spread,

several targets may be identified within the FOV based on the

same principle.

Fig. 3. Packaged WSN mote with a sensor amplification circuit (scale in cm).

III. WSN IMPLEMENTATION

The proposed distributed localization method with ISRR is

implemented on a small WSN comprising several smart dust

motes. The motes are equipped with Atmel ATmega128RFA1

microprocessors, which conveniently provide an on-chip AD

converter for signal acquisition and a radio transceiver for

WSN communication. The microprocessor has a clock speed

of 16 MHz and provides 16kB of SRAM memory for oper-

ation with an additional 128kB of flash memory for program

code. The on-chip Analog to Digital Converter (ADC) has a

resolution of 10 bits and is able to sample with rates up to

330 kHz. However, actual experiments were carried out with

a sampling rate of 2 kHz for each microphone channel, since

higher sampling rates provided inconsistent and erroneous

results during data acquisition. We were able to determine

that erroneous results were caused by signal leakage from

the previous ADC channel to the succeeding channel when

switching between channels, but the cause of the leakage

could not be determined. Mote-to-mote communication was

realized with the IEEE standard 802.15.4 compliant radio

transceiver with an effective indoor communication range

of approximately 30 meters. The IEEE 802.15.4 standard

supports transfer rates up to 250 kbit/s and packet sizes not

larger than 127 bytes. Vansonic PVM-6052 electret condenser

microphones were used for acoustic signal acquisition with

additional circuitry performing signal amplification and the

normalization needed for the microprocessor ADC input. For

every mote a pair of microphones was mounted facing the

same direction on a plastic board, which was then attached to

the mote’s plastic chassis.

The smart sensor mote chosen for the experiments is pre-

sented in Fig. 3. Microphone amplification circuitry is situated

on the right and the microphone itself — in the bottom

right corner. The mote is powered by a 3.7 V, 6600 mAh

battery block (left from the sensor circuit). The motes are

packaged in protective frames 16 cm in length. The poor

computational characteristics listed above are typical for smart

sensor motes. The reason for this is that these motes must

work ubiquitously and autonomously with the battery they are

provided for as long as possible. For example, the battery used

in our configuration can sustain the motes for 1–1.5 years in a

low duty cycle mode and approximately a month in constant



Fig. 4. Discretization of the AOA scope, defined by Δkmax.

TABLE I
INTER-SENSOR DISTANCE FOR DIFFERENT SAMPLING RATES

Δkmax nAOA
l (cm)

fs = 44.1 kHz fs = 2 kHz fs = 500 Hz
1 3 0.8 17.2 68.7
2 5 1.6 34.4 137.4
3 7 2.4 51.6 206.1
10 21 7.8 171.7 686.8

operation mode. The goal here is to show that if localization

and ISRR can be carried out on a smart sensor mote network,

it is reasonable to assume it can also be implemented on larger

networks with computationally more powerful motes.

A. Implications of Using Low Sampling Rates

The essential operation for AOA estimation is the signal

cross-correlation (3). As our time delay τ is bounded by τmax

and τ is expressed in delay in samples Δk, then Δk is also

bounded by a maximal sample shift Δk ∈ [−Δkmax,Δkmax],
where Δkmax is calculated as

Δkmax =

⌊
l · fs

c

⌋
, (8)

where �·� denotes rounding to the largest previous integer

(floor function). Consequently the view scope of the sen-

sor pair is reduced to the number of possible AOA values

nAOA = 2 ·Δkmax + 1. Fig. 4 depicts a view scope divided

into 9 sectors. For any actual AOA ϕ, only its discrete margin

ϕ̂ ∈ [γ−Δkmax , γΔkmax ], corresponding to the correlation

maximum, can be estimated. For devices capable of only low

sampling rates this poses a problem in terms of compromise

between the values of l and Δkmax . Consider Table I. The

standard CD sampling rate of 44.1 kHz is used for reference

and l is calculated using (8): l = Δkmax · c/fs. The table

shows that to provide even the smallest nAOA the inter-sensor

distances must be quite considerable at low fs. It is clear that

if mote dimensions do not exceed 15–20 cm, it would not be

reasonable to make l = 1.7 m to provide the sensor scope

with 21 possible AOA.

We chose l = 0.7 m for our motes, which gives nAOA = 9
possible AOA values with an average step of 19.7◦ at the

used rate of fs = 2 kHz. These are calculated using (4)

and presented in Fig. 5. The substantial difference with high

sampling rates is also evident from the figure — for the same

sensor distance at a rate of fs = 44.1 kHz, the AOA number

is equal to 179 with an average step of 0.92◦. A small nAOA

introduces additional error into the localization process as the

Fig. 5. Possible values of AOA for a sensor pair with l = 0.7 m and sampling
rate fs = 2 kHz (top); fs = 44.1 kHz (bottom).
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Fig. 6. Results of signal cross-correlation at different sampling rates.

ISRR estimated regions may become larger and get shifted

from the true area occupied by the sound source. For example

an angle step of 19.7◦ can give an error of 1.8 m if the

sound source is situated only 5 m away from the sensors.

To manage the situation a large number of motes must be

used, preferably steered by different angles α (i.e. not facing

in exactly the same direction). Random mote placements allow

AOA uncertainty regions to superimpose on one another thus

reducing the discrete gaps.

Low sampling rates also influence cross-correlation in two

ways. Firstly, if the signal contains many strong components in

the higher frequencies, they are not acquired at low sampling

rates. As a result aliasing may occur, which in turn reduces

the correlation reliability. A precise peak corresponding to a

single Δk loses its steepness and spreads to several values.

This makes AOA estimation and the control metric (6) less



Fig. 7. Sensor mote architecture schematic.

reliable. Secondly, the cross-correlation yields exactly nAOA

coefficients, and if this number is low, the correlation peak

cannot stand out from the average correlation level as much

as in the case of high sampling rates. At low SNR the peak

becomes almost uniform with the average level and control

metric (6) declares the result invalid for the majority of signal

frames. Both effects are evident from Fig. 6. The upper subplot

shows the result of cross-correlation of two signals sampled at

44.1 kHz and the lower — at 8 kHz. For both cases the inter-

microphone distance was equal to l = 0.45 m and the AOA

from the acoustic source, as well as signal power, were the

same. As nAOA is more than five times larger in the case

of fs = 44.1 kHz and more signal energy information is

contained in a single frame, the correlation peak is much more

steep and evident than in the fs = 8 kHz case. Generally

at a fixed fs correlation results are improved by increasing

the signal frame length, thus providing more signal energy

information. Here a compromise between correlation result

reliability and the device refresh rate, as well as the amounts

of required memory must be reached.

B. Resource Management and Scheduling

The smart sensor mote must divide its computational re-

source between two main tasks: sampling the ADC and

performing cross-correlation (3) on the sensor signals. With

the current hardware setup and computational power of the

motes, sampling the ADC and doing correlation calculations

at the same time is not possible, therefore currently these tasks

are performed separately. A simplified schematic of sensor

mote architecture and computational steps is presented in

Fig. 7. First the ADC samples both channels and obtains a

0.2 second frame (totaling 400 samples at 2 kHz sampling

rate) from each channel. Since we have a single ADC, both

channels cannot be sampled simultaneously. Therefore there

is a channel switching delay of about 150 microseconds. The

phase shifts between channels due to these switching delays

can be accounted for and they do not affect cross-correlation

calculations significantly.

After the frames have been acquired, the ADC is stopped

and the cross-correlation of frames is calculated. If a sound

source is detected in the FOV of the sensor mote and the

DOA of sound waves is found, then this information along

with the spatial and temporal metadata is broadcast over the

sensor network. Calculating the cross-correlation of frames

and composing and transmitting the DOA message does not

require much time (50 – 100 ms). Nevertheless, the smart

sensor mote keeps track of this elapsed time and right before

broadcasting the DOA message, appends the elapsed time to

the message. Elapsed time is the time difference between the

moment when the acoustic data reaches the processing unit and

the moment of message composition. It indicates the ’age’ (in

milliseconds) of the calculated DOA value.

The fusion node has also two key tasks: listening to mes-

sages broadcast by sensor motes and performing sound source

region estimation. As mentioned in Section II-A, sensor motes

are partitioned into groups. Group membership is established

by position metadata (coordinates and steering angle) found

in the messages. Every fusion node maintains a lookup table

consisting of coordinates of motes, which the node includes

in its group. The table is updated every time a mote with

new coordinates appears. A fusion node is only interested in

messages arriving from motes in its own group and discards

others. Sound source region estimation is performed when

enough DOA messages with fresh data have been received.

When the last data received becomes too old to be useful and

no new data is received then the fusion node switches to idle

mode until new messages arrive. Currently the expiration time

for DOA information is 3 seconds, after which the fusion node

discards the data.

C. Communication Strategy and Real-Time Operation

The benefit from using smart sensors is that preliminary

sensor signal analysis is done on spot. With large networks it

is not conceivable that raw sensor data is forwarded to some

fusion unit. With the sampling parameters proposed for the

WSN experiment (2 kHz sampling rate on both channels and

frame lengths of 400 samples) it would take one sensor node

in ideal conditions at least 0.15 seconds to communicate its

entire measurement buffer to a fusion node. It is clear that with

only a small number of motes the communication channel will

be congested and system operation will be paralyzed. Hence, it

is necessary to perform signal processing on the sensor motes

and only communicate forward the results. This is what is

proposed in our approach.

In the WSN experiment the communication scheme is built

upon indirect messaging, i.e. motes broadcast the messages,

which are to be received by fusion nodes. The indirect

approach offers a quick and robust method for validating the

data processing algorithm. The approach makes the network

scalable to a certain extent and easily integrable into a larger

system of systems [20].

In the algorithm validation experiment the sensor nodes

broadcast messages about their latest DOA estimates and

include their location and orientation metadata as well as

temporal metadata with the broadcast message. A fusion node

receiving these messages collects the DOA and metadata

information and regularly initiates the ISRR algorithm to

locate possible sound sources. Note that communication is

performed in one direction — from sensor motes to fusion

nodes. Therefore sensor motes do not possess any information

concerning group partitioning.

The proposed WSN communication strategy is asyn-

chronous, i.e. sensor motes do not have a global clock, which



Fig. 8. Main problems situated with asynchronous data interchange.

would enable coordination of signal acquisition and message

broadcasting. Rather every mote transmits a DOA estimate

after every signal acquisition and processing loop (in our case

it lasts 250–300 ms). The receiving fusion node can then esti-

mate the time of DOA calculation in its own local time using

the elapsed timestamp value and the common understanding

of the millisecond time unit. For real-time operation two

parameters must be strictly defined: the maximum duration of

the DOA estimation loop and the maximum communication

and processing delay for incoming messages. This must be

done to enable estimating the validity of DOA estimates for

position estimation. The asynchronous decentralized approach

described above is robust and simple, suitable for algorithm

validation, however in operational systems better control over

data paths is desirable, which can be achieved by applying

proactive middleware, as described in the next section.

D. Proactive Middleware and Data Validation

Performing computations in dynamic ad-hoc wireless sensor

networks presents many challenges in terms of guaranteeing

data correctness. The data used in the fusion process must

satisfy certain temporal and spatial constraints (i.e. its age must

not be greater than a pre-specified value or come from a certain

location). It is easy to achieve such guarantees in a system

with a fixed configuration, however in a dynamic setting the

systems must evaluate these data properties at runtime.

For effective acoustic localization the DOA calculations

ideally must be performed simultaneously. In real conditions

a time interval must be specified in which the estimates are

considered temporally coherent. Due to undefined transmission

delays the data may arrive with considerable delays and there-

fore not satisfy the coherence requirement. Coherent data is

vital for all signal processing tasks, like tracking and trajectory

estimation. Fig. 8 graphically explains the validity interval

mismatch and wrong order of message arrival. The validity

interval specifies the time period, during which the data is

considered coherent. Due to undetermined transmission delays

the coherent messages may not fit in the interval. On the other

hand, they may arrive in time, but in a wrong order, which may

later cause errors in tracking procedures.

In [20], [21] we have presented the concept of proactive

middleware, called ProWare, which is a lightweight distributed

middleware component running on every element of the WSN

system (see Fig. 9). ProWare implements a subscription based

Fig. 9. Principle diagram of proactive middleware mediation.

information exchange scheme, where the data consumer (fu-

sion node) can subscribe for data from the providers (sensor

nodes computing DOA estimates). ProWare also handles data

validity checking ensuring that the data received at the fusion

node satisfies the constraints for a given fusion operation (i.e.,

that the data is temporally coherent). ProWare manages the

process of finding appropriate data providers (in our case

sensor motes with overlapping fields of view) and setting up

the data exchange paths with the consumers (fusion nodes).

Both the validity checking and provider-consumer agreements

are performed on-line. Among other tasks the middleware

component keeps track of the different clock offsets of the

motes and regularly checks and updates the change (caused

by clock drift, jitter etc.) in these offsets. This temporal

information is then used to estimate the time of measurement

of the data in local time of the data consumer.

IV. EXPERIMENTAL RESULTS

We demonstrate the applicability of our proposed method of

acoustic localization and the implications situated with using

low sampling rates by performing an experiment of single

speaker localization. For the initial experimental validation

we performed data acquisition using an Agilent U2354A data

acquisition device (DAQ) and performed localization offline

in the MATLAB environment. Data acquisition is performed

at two sampling rates: fs = 8 kHz and fs = 2 kHz per

sensor (as the motes are able to sample the signal at 2 kHz).

For the experiment we use four microphone pairs arranged

in an angular configuration — two microphone pairs are

placed perpendicular to the other two. For comparison with our

proposed approach we apply the SRP-PHAT method, which

was mentioned in Section II-B. The fact that SRP-PHAT is

a highly resource demanding procedure is another reason for

choosing MATLAB for computations. The ISRR procedure

implemented in MATLAB is identical to the one running on

the motes, therefore there is no difference in localization. Mote

communication and asynchronous data validation is not con-

sidered in this experiment. Additionally we apply simplified

SRP-PHAT with Stochastic Region Contraction (SRC) to the
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Fig. 10. Results of acoustic source localization using four pairs of microphones and two approaches: SRP-PHAT and the proposed ISRR.

source areas estimated by ISRR in order to determine the

cumulative acoustic energy levels in these areas. The principles

of SRP-PHAT and SRC are briefly introduced in the Appendix.

For better comprehension of the result analysis it is advised

to get familiarized with these localization methods.

The results of speaker localization are presented in Fig. 10.

The speaker is placed at position (0.7, 2) meters and a short

speech recording is made. We analyze the signal frame by

frame, as it is done in our WSN implementation, using a

frame length of 200 ms. For SRP-PHAT the area discretization

value is set to 1 cm2. Fig. 10 portrays localization results for

a single signal frame related to the same time instance. In

the figure microphones are represented by red squares with

numbers inside them. The four microphone pairs are then 1, 2;

3, 4; 5, 6; 7, 8. SRP-PHAT results of cumulative energy values

are plotted using a red-green-blue color scale. DOA vectors

of ISRR are denoted by blue lines, their intersections — by

magenta stars, the estimated regions — by black rectangles and

the maximum of SRP-PHAT with SRC — by black circles.

It can be seen from the two upper plots of Fig. 10, that

at fs = 8 kHz both SRP-PHAT and ISRR localize the sound

source efficiently. The SRP-PHAT region of particularly high

cumulative energy (i.e. orange to red on the scale) is reduced

to approximately 0.01 m2. The region estimated by ISRR

is significantly larger, but proportionate to the SRP-PHAT

region of medium cumulative energy (i.e. green on the scale).

However, the sound source is fully confined by the region, as

confirmed by the SRP-PHAT with SRC estimate on the region.

On the other hand, both methods suffer from the problems

situated with the low sampling rate of fs = 2 kHz, as it can



be clearly seen in the lower plots of Fig. 10. SRP-PHAT high

cumulative energy region enlarges to approximately 0.25×0.3
meters with an ’echoing’ region situated in the top left corner

of the FOV. The decrease of nAOA and the number of signal

samples in a frame, described in Section III-A, affects SRP-

PHAT, producing a more rough and less comprehensive image.

Nevertheless, SRP-PHAT localizes the source properly. ISRR

performs worse, missing the source slightly up the y-axis. The

reason lies in the fourth microphone pair failing to estimate

the DOA correctly. Although the confined region is close to

the source position, it does not confine it fully. This example

clearly shows the need for a larger number of microphone

pairs (motes) to be used for successful localization.

Generally the performance of ISRR is comparable to the

performance of SRP-PHAT in terms of localization accuracy,

with the deviation of ISRR estimates from the localization

results over the whole FOV being less than 0.13 m [12].

Considering the dimensions of usual acoustic sources under

localization (no less than 15–20 cm), this deviation is quite

permissible. In the case of low sampling rates, however, both

SRP-PHAT and ISRR become less reliable. Therefore it cannot

be explicitly stated, that our proposed method suffers from

the limitations of embedded hardware more than the other.

On the contrary, ISRR significantly reduces the number of

computations required for localization up to an area of a

fraction of a square meter [11].

V. DISCUSSION AND FUTURE WORK

The paper mainly considers the limitations of data pro-

cessing hardware and touches upon the implications of asyn-

chronous data interchange slightly. The proactive middleware

component, which has been tested on abstract data, was not

fully implemented for the purposes of acoustic localization on

a large number of smart dust motes. Thus further testing on

a large network of motes is required in order to estimate the

feasibility of the component for our specific purpose.

Considering our recent developments, we have achieved

a reliable 4 kHz sampling rate per channel on the Atmel

ATmega128RFA1. As a consequence, the localization quality

has noticeably improved. The problem of signal leakage

when changing channels is still not solved, but the higher

sampling rate was reached by changing the ADC clock speed,

which consequently affected the settling time (i.e., the time

automatically inserted by hardware to clear and prepare the

ADC registers for channel change) in-between changing ADC

channels and alleviated the signal leakage problem. We do not

plan on improving this hardware platform any further, instead

we are considering more powerful embedded devices, such

as the Gumstix Overo series, for our localization approach.

The implementation on Atmel ATmega displays promising

results, however, it requires a significant number of motes

and their significant dispersion in the FOV to sustain the

localization quality on low sampling rates, and not every

application and environment will allow these things. For the

applications, where only a few motes are permitted, the motes

must estimate the DOA more accurately, and that requires

more resources. With the increase of computational power it

will be also possible to increase the number of sensors on each

mote, which will increase the reliability of DOA estimates.
Increasing the number of sensors per mote will also allow

for 3D acoustic localization. As the elevation AOA cannot be

accurately estimated by a pair of horizontally placed micro-

phones, 3D localization will require additional microphones to

be utilized to estimate the AOA in the vertical plane. For this

direction of future research the proposed ISRR method is to

be expanded in order to be able to confine volumetric regions,

as opposed to planar areas, discussed in this paper.

VI. CONCLUSION

The paper considers an acoustic source localization sys-

tem and its implementation in a WSN consisting of dual

channel low power smart sensors. A decentralized ad-hoc

WSN structure for distributed computation is proposed, which

reduces the number of computations per network node and

introduces redundancy to the system, making it more reliable.

The applied localization approach is presented and different

problems situated with system implementation on specific

hardware are handled. Computationally weak smart sensor

hardware imposes limitations on the signal sampling rate,

processing time and communication bandwidth. A compro-

mise between a reliable sampling rate, suitable sensor pair

geometry and localization accuracy is established. The applied

asynchronous communication strategy reduces message inter-

change and does not overwhelm the network’s fusion nodes.

A practical experiment is held to test the proposed localization

method and compare it to a popular and effective, but resource

demanding approach. Experimental results show, that both

methods suffer from the limitations induced by low power

embedded hardware. However, the proposed method is capable

of localization with permissible accuracy.

APPENDIX

OVERVIEW OF SRP-PHAT AND SRC

Steered Response Power with Phase Transform (SRP-

PHAT) is a technique of estimating the DOA of sound signals.

The SRP P (	a) is a real-valued functional of a spatial vector 	a,

defined by the FOV of a specific microphone array. The high

maxima in P (	a) indicate the estimates of sound source loca-

tion. P (	a) is computed for each direction as the cumulative

Generalized Cross-Correlation with Phase Transform (GCC-

PHAT) across all pairs of microphones at the theoretical time

delays associated with the chosen direction. Consider a pair of

signals xk(t), xl(t) of an array consisting of M microphones.

The times of sound arrival from point a to the two micro-

phones are τ(a, k) and τ(a, l) respectively. Hence the time

delay between the two signals is τkl(a) = τ(a, k) − τ(a, l).
The SRP-PHAT for all pairs of signals is then defined as

P (a) =
M∑
k=1

M∑
l=k+1

ˆ ∞
−∞

ΨklXk(ω)X
∗
l (ω)e

jωτkl(a)dω, (9)

where Xi(ω) is the spectrum (the Fourier transform) of signal

xi and X∗
i (ω) is the conjugate of that spectrum. Ψkl is the

PHAT weight of the inverse of spectral magnitudes:

Ψkl =
1

|Xk(ω)X∗
l (ω)|

. (10)



Conventional SRP-PHAT performs as many evaluations (9),

as there are points in 	a, the number of which is defined by

the dimensionality of the FOV and the accuracy measure,

that partitions the area (or volume) into small discrete re-

gions. The method is highly resource demanding, particularly

when applied to large areas of observation. The number of

evaluations (9) is significantly reduced by applying Stochastic

Region Contraction (SRC), which iteratively narrows down the

search volume for the global maximum [15]. SRC starts with

the initial search volume (i.e. the whole FOV), stochastically

explores the functional of that volume by randomly picking

a specific number of points, then contracts the search volume

into a sub-volume containing the desired global optimum and

proceeds iteratively until the SRP maximum can be located

with a finite precision.
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