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Abstract. This paper is devoted to the study of the existence of at least three classical
solutions for a second-order multi-point boundary value problem with impulsive effects.
We use variational methods for smooth functionals defined on reflexive Banach spaces
in order to achieve our results. Also by presenting an example, we ensure the applicability
of our results.
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1. INTRODUCTION

In this paper, we consider the second-order `-point boundary value problem with
m-impulsive effects




−(φpi
(u′i))′ = λFui

(t, u1, . . . , un) + µGui
(t, u1, . . . , un), t ∈ (0, 1) \Q,

∆φpi
(u′i(tj)) = Iij(ui(tj)), j = 1, . . . ,m,

ui(0) =
∑`
k=1 akui(sk), ui(1) =

∑`
k=1 bkui(sk)

(φλ,µ)

for i = 1, . . . , n, where Q = {t1, . . . , tm}, pi ∈ (1,∞), φpi
(x) = |x|pi−2x for i =

1, . . . , n, λ > 0, µ ≥ 0 are parameters, m,n, ` ∈ N, 0 = t0 < t1 < t2 < . . . <
tm < tm+1 = 1, 0 < s1 ≤ s2 ≤ . . . ≤ s` < 1, tj 6= sk, j = 1, . . . ,m, k = 1, . . . , `,
F,G : [0, 1]× Rn → R are measurable with respect to t, for every (x1, . . . , xn) ∈ Rn,
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continuously differentiable in (x1, . . . , xn), for almost every t ∈ [0, 1] and satisfy the
standard summability condition

sup
|ξ|≤%1

{
max{|F (·, ξ)|, |G(·, ξ)|, |Fξi

(·, ξ)|, |Gξi
(·, ξ)|, i = 1, . . . , n}

}
∈ L1([0, 1])

(1.1)
for any %1 > 0 with ξ = (ξ1, . . . , ξn) and |ξ| =

√∑n
i=1 ξ

2
i , Fui

and Gui
are the partial

derivatives of F and G with respect to ui, respectively,

∆φpi(u′i(tj)) = φpi(u′i(t+j ))− φpi(u′i(t−j )),

where u′i(t+j ) and u′i(t−j ) represent the right-hand limit and left-hand limit of u′i(t)
at t = tj , respectively, Iij ∈ C(R,R), i = 1, . . . , n, j = 1, . . . ,m and ak, bk ∈ R for
k = 1, . . . , `.

The theory of multi-point boundary value problems for ordinary differential equa-
tions arise in different areas of applied mathematics and physics, especially in heat
conduction [4, 5, 27, 29], the vibration of cables with nonuniform weights [35], and
other problems in nonlinear elasticity [45]. The study of multi-point BVPs for linear
second-order ordinary differential equations was initiated by Il’in and Moiseev [26].
From then on, many authors studied more general nonlinear multi-point boundary
value problems. Recently, the existence and multiplicity of positive solutions for non-
linear multi-point BVPs have received a great deal of attention, we refer the reader
to [11,12,15,16,18–20,23–25,34] and the references therein.

On the other hand, impulsive differential equations serve as basic models to study
the dynamics of processes that are subjected to sudden changes in their states. These
kinds of processes naturally occur in control theory, biology, optimization theory,
medicine, and so on (see [6, 10, 28, 36]). The theory of impulsive differential equa-
tions has recently received considerable attention, see [2, 3, 6, 30, 33, 39]. There has
been increasing interest in the investigation for boundary value problems of nonlin-
ear impulsive differential equations during the past few years, and many works have
been published about the existence of solutions for second-order impulsive differential
equations. There are some common techniques to approach these problems: Fixed
point theorems [8,9,31], the method of upper and lower solutions [7], and topological
degree theory [37]. In the last few years, variational methods and critical point theory
have been used to determine the existence of solutions for impulsive differential equa-
tions under certain boundary conditions, see [1, 21, 43, 44, 46, 48] and the references
therein. We note that the difficulties dealing with such problems are that their states
are discontinuous. Therefore, the results of impulsive differential equations, especially
for higher-order impulsive differential equations, are fewer in number than those for
differential equations without impulses.

Moreover, some researchers have studied the existence and multiplicity of solu-
tions for multi-point boundary value problems for second-order impulsive differential
equations; we refer the reader to [13,14,32,42] and the references therein. For example
in [13], Feng and Pang used fixed-point index theory and a fixed-point theorem in the
cone of strict set contraction operators to obtained some new results for the existence
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and multiplicity of positive solutions of a boundary value problem for second-order
three-point nonlinear impulsive integrodifferential equation of mixed type in a real
Banach space. In [32], Liu and Yu with the help of the coincidence degree continuation
theorem, achieved a general result concerning the existence of solutions of m-point
boundary value problems for second-order differential systems with impulses. They
also give a definition of autonomous curvature bound set relative to this m-point
boundary value problems, and by using this definition and the above existence theo-
rem, obtained some simple existence conditions for solutions of these boundary value
problems. Meiqiang and Dongxiu in [14], based on fixed point theory in a cone, dis-
cussed the existence of solutions for the m-point BVPs for second-order impulsive
differential systems, and Thaiprayoon et al. in [42], introduced a new definition of
impulsive conditions for boundary value problems of first-order impulsive differential
equations with multi-point boundary conditions was introduced, and used the method
of lower and upper solutions in reversed order coupled with the monotone iterative
technique to obtain the extremal solutions of the boundary value problem.

Motivated by the above works, in this paper we are interested to investigate the ex-
istence of at least three nontrivial classical solutions for second-order `-point boundary
value problems with m-impulsive effects (φλ,µ) for appropriate values of the parame-
ters λ and µ belonging to real intervals. Our approach uses variational methods and
a three critical points theorem due to Ricceri [38].

Here, we state a special case of our main result.

Theorem 1.1. Let p1, p2 > 1 such that either min{p1, p2} ≥ 2 or max{p1, p2} < 2,
F : R2 → R be a C1-function satisfying the condition

sup√
ξ2

1+ξ2
2≤%2

max{|F (ξ1, ξ2)|, |Fξ1(ξ1, ξ2)|, |Fξ2(ξ1, ξ2)|} ∈ L1([0, 1])

for any %2 > 0, F (0, 0) = 0, I11, I12, I21, I22 ∈ C(R,R) be nondecreasing functions
such that Iij(0) = 0 and Iij(s)s > 0, s 6= 0 for i = 1, 2, j = 1, 2, a1, a2, b1, b2 ∈ R
such that a1 + a2 6= 1 and b1 + b2 6= 1, 0 < t1 < t2 < 1, 0 < s1 ≤ s2 < 1, and tj 6= sk,
j = 1, 2, k = 1, 2. Assume that

max
{

lim sup
(u1,u2)→(0,0)

F (u1, u2)
|u1|p1 + |u2|p2

, lim sup
|u|→∞

F (u1, u2)
|u1|p1 + |u2|p2

}
< 0

and

sup
u∈Ê1×Ê2

1∫
0
F (u1(t), u2(t))dt

∑2
i=1

‖ui‖pi
pi

pi
+
∑2
i=1
∑2
j=1

ui(tj)∫
0

Iij(ζ)dζ
> 0,

where

Êi =
{
ξ ∈W1,pi([0, 1]) : ξ(0) = a1ξ(s1)+a2ξ(s2) , ξ(1) = b1ξ(s1)+b2ξ(s2)

}
, i=1, 2.
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Then, for each compact interval [c, d] ⊂ (λ̃,∞), where

λ̃ = inf
u∈Ê1×Ê2

{∑2
i=1

‖ui‖pi
pi

pi
+
∑2
i=1
∑2
j=1

ui(tj)∫
0

Iij(ζ)dζ

1∫
0
F (u1(t), u2(t))dt

:
1∫

0

F (u1(t), u2(t))dt > 0
}
,

there exists R > 0 with the following property: for every λ ∈ [c, d] and for every
G ∈ C1(R2,R) such that

sup√
ξ2

1+ξ2
2≤%3

max{|G(ξ1, ξ2)|, |Gξ1(ξ1, ξ2)|, |Gξ2(ξ1, ξ2)|} ∈ L1([0, 1])

for any %3 > 0 with G(0, 0) = 0, there exists γ > 0 such that, for each µ ∈ [0, γ],
the system




−|u′i(t)|pi−2u′′i (t) = λFui
(u1, u2) + µGui

(u1, u2), t ∈ (0, 1) \ {t1, t2},
|u′i(t+j )|pi−2u′′i (t+j )− |u′i(t−j )|pi−2u′′i (t−j ) = Iij(ui(tj)), j = 1, 2,
ui(0) = a1ui(s1) + a2ui(s2), ui(1) = b1ui(s1) + b2ui(s2)

for i = 1, 2, has at least three classical solutions whose norms in the space Ê1 × Ê2
are less than R.

2. PRELIMINARIES

In this section, we will introduce some notations, definitions and preliminary facts
which are used throughout this paper.

To construct appropriate function spaces and apply critical point theory in order
to investigate the existence of solutions for system (φλ,µ), we introduce the following
basic notations and results which will be used in the proofs of our main results.

Throughout this article, we let E be the Cartesian product of n spaces

Ei =
{
ξ ∈W1,pi([0, 1]) : ξ(0) =

∑̀

k=1
akξ(sk) , ξ(1) =

∑̀

k=1
bkξ(sk)

}

for i = 1, . . . , n, i.e., E = E1 × . . .× En, endowed with the norm

‖u‖ = ‖(u1, . . . , un)‖ =
n∑

i=1
‖ui‖pi

,

where

‖ui‖pi
=
( 1∫

0

|u′i(t)|pi dt
) 1

pi

for i = 1, . . . , n. Then E is a reflexive real Banach space.
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In this paper, we assume throughout, and without further mention, that the
following conditions hold:
(H1) either p ≥ 2 or p < 2, where p = min{p1, . . . , pn} and p = max{p1, . . . , pn};
(H2)

∑`
k=1 ak 6= 1 and

∑`
k=1 bk 6= 1.

Let

c = max
1≤i≤n

{
sup

ui∈Ei\{0}

maxt∈[0,1] |ui(t)|pi

‖ui‖pi
pi

}
. (2.1)

Since pi > 1 for i = 1, . . . , n, the embedding E = E1 × . . . × En ↪→
(
C0([0, 1])

)n
is compact, and so c <∞. Moreover, by (H2), from [11, Lemma 3.1], we have

sup
v∈Ei\{0}

maxt∈[0,1] |v(t)|pi

‖v‖pi
pi

≤ 1
2

(
1 +

∑`
k=1 |ak|

|1−∑`
k=1 ak|

+
∑`
k=1 |bk|

|1−∑`
k=1 bk|

)
(2.2)

for i = 1, . . . , n.
By a classical solution of (φλ,µ), we mean a function u = (u1, . . . , un) such that,

for i = 1, . . . , n, the left-hand side limit and the right-hand side limit of the derivative
ui in tj must exist and must be finite, ui ∈ C1([0, 1] \Q), φpi

(u′i) ∈ C1([0, 1] \Q), and
ui satisfies (φλ,µ). We say that a function u = (u1, . . . , un) ∈ E is a weak solution
of (φλ,µ) if

1∫

0

( n∑

i=1
φpi

(u′i(t))v′i(t)
)

dt+
n∑

i=1

m∑

j=1
Iij(ui(tj))vi(tj)

− λ
1∫

0

n∑

i=1
Fui

(t, u1(t), . . . , un(t))vi(t)dt− µ
1∫

0

n∑

i=1
Gui

(t, u1(t), . . . , un(t))vi(t)dt = 0

for any v = (v1, . . . , vn) ∈W1,p1
0 ([0, 1])×W1,p2

0 ([0, 1])× . . .×W1,pn

0 ([0, 1]).
Let φ−1

pi
denote the inverse of φpi

for every i = 1, . . . , n. Then φ−1
pi

= φqi
, where

1
pi

+ 1
qi

= 1. It is clear that φpi
is increasing on R,

lim
x→−∞

φpi
(x) = −∞ and lim

x→∞
φpi

(x) =∞. (2.3)

Lemma 2.1. For fixed λ, µ ∈ R, u = (u1, . . . , un) ∈ (C(tj , tj+1))n, j = 0, 1, . . . ,m,
define αij(x;u) : R→ R, i = 1, . . . , n, j = 0, 1, . . . ,m by

αij(x;u)

=
tj+1∫

tj

φ−1
pi

(
x− λ

δ∫

0

Fui
(t, u1(t), . . . , un(t))dt− µ

δ∫

0

Gui
(t, u1(t), . . . , un(t))dt

)
dδ

+
∑̀

k=1
akuk(sk)−

∑̀

k=1
bkuk(sk).
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Then, the equation

αij(x;u) = 0 (2.4)

has a unique solution xu,i,j.

Proof. Taking (2.3) into account, we have

lim
x→−∞

αij(x, u) = −∞ and lim
x→∞

αij(x, u) =∞.

Since αij(·, u) is continuous and strictly increasing on R, the conclusion follows
for i = 1, . . . , n and j = 1, . . . ,m.

Lemma 2.2. The function u = (u1, . . . , un) is a solution of the system (φλ,µ) if and
only if ui is a solution of the equation

ui(t) =
∑̀

k=1
akuk(sk) +

t∫

0

φ−1
pi

(
xu,i,j − λ

δ∫

0

Fui
(t, u1(t), . . . , un(t))dt

− µ
δ∫

0

Gui
(t, u1(t), . . . , un(t))dt

)
dδ

for i = 1, . . . , n, where xu,i,j is the unique solution of (2.4) for j = 0, 1, . . . ,m,
and ∆φpi

(u′i(tj)) = Iij(ui(tj)) for i = 1, . . . , n and j = 0, 1, . . . ,m.

Proof. This can be verified by direct computations (see [17, Lemma 2.4]).

Lemma 2.3. If a function u ∈ E is a weak solution of (φλ,µ), then u is a classical
solution of (φλ,µ).

Proof. Let u = (u1, . . . , un) ∈ E be a weak solution of (φλ,µ). Then

1∫

0

( n∑

i=1
φpi

(u′i(t))v′i(t)
)

dt+
n∑

i=1

m∑

j=1
Iij(ui(tj))vi(tj)

− λ
1∫

0

n∑

i=1
Fui

(t, u1(t), . . . , un(t))vi(t)dt

− µ
1∫

0

n∑

i=1
Gui(t, u1(t), . . . , un(t))vi(t)dt = 0

(2.5)
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for any v = (v1, . . . , vn) ∈ W1,p1
0 ([0, 1]) ×W1,p2

0 ([0, 1]) × . . . ×W1,pn

0 ([0, 1]). So (2.5)
holds for all v ∈W1,p1

0 (tj , tj+1)×W1,p2
0 (tj , tj+1)× . . .×W1,pn

0 (tj , tj+1), v(t) = 0 for
t ∈ (0, 1) \ (tj , tj+1) for j = 0, 1, . . . ,m. Then (2.5) becomes

tj+1∫

tj

( n∑

i=1
φpi(u′i(t))v′i(t)

)
dt− λ

tj+1∫

tj

n∑

i=1
Fui(t, u1(t), . . . , un(t))vi(t)dt

− µ
tj+1∫

tj

n∑

i=1
Gui

(t, u1(t), . . . , un(t))vi(t)dt = 0

(2.6)

for j = 0, 1, . . . ,m. Recall that, in one dimension, any weakly differentiable function
is absolutely continuous, so that its classical derivative exists almost everywhere, and
the classical derivative coincides with the weak derivative. Integrating (2.6) by parts
gives

n∑

i=1

tj+1∫

tj

[−(φpi
◦ u′i)′(t)−λFui

(t, u1(t), . . . , un(t))−µGui
(t, u1(t), . . . , un(t))] vi(t)dt=0

for j = 0, 1, . . . ,m. Thus for i = 1, . . . , n,

−(φpi
◦ u′i)′(t)− λFui

(t, u1(t), . . . , un(t))− µGui
(t, u1(t), . . . , un(t)) = 0 (2.7)

for almost every t ∈ (tj , tj+1), j = 0, 1, . . . ,m. Then, by Lemmas 2.1 and 2.2, we see
that

ui(t) =
∑̀

k=1
akuk(sk) +

t∫

0

φ−1
pi

(
xu,i,j − λ

δ∫

0

Fui
(t, u1(t), . . . , un(t))dt

− µ
δ∫

0

Gui
(t, u1(t), . . . , un(t))dt

)
dδ

for i = 1, . . . , n, where xu,i,j is the unique solution of (2.4) for j = 0, 1, . . . ,m. Hence,
ui ∈ C1(tj , tj+1) and φpi

◦ u′i ∈ C1(tj , tj+1) for i = 1, . . . , n and j = 0, 1, . . . ,m.
Therefore (2.7) holds for t ∈ (0, 1)\Q. Now we shall show that the impulsive conditions
are satisfied. For all v = (v1, . . . , vn) ∈W 1,p1

0 ([0, 1])×W 1,p2
0 ([0, 1])×. . .×W 1,pn

0 ([0, 1]),
from the equality

(φpi
◦ u′i)′(t)vi(t) = d

dt




t∫

0

(φpi ◦ u′i)′(ζ)dζvi(t)


−




t∫

0

(φpi ◦ u′i)′(ζ)dζ


 v′i(t),
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we have

1∫

0

(φpi
◦ u′i)′(t)vi(t)dt

=
1∫

0


 d

dt




t∫

0

(φpi ◦ u′i)′(ζ)dζ vi(t)


−




t∫

0

(φpi ◦ u′i)′(ζ)dζ


 v′i(t)


 dt

= vi(1)
1∫

0

(φpi
◦ u′i)′(t)dt

−
1∫

0


φpi

(u′i(t))− φpi
(u′i(0))−

∑

0≤tj<t
∆φpi

(u′i(tj))


 v′i(t)dt

=


φpi(u′i(1))− φpi(u′i(0))−

m∑

j=1
∆φpi(u′i(tj))


 vi(1)

−
1∫

0

φpi
(u′i(t))v′i(t)dt+ φpi

(u′i(0))[vi(1)− vi(0)]

+
m∑

j=1

tj+1∫

tj

∑

0≤tj<t
∆φpi

(u′i(tj))v′i(t)dt

= φpi
(u′i(1))vi(1)− φpi

(u′i(0))vi(0)−
m∑

j=1
∆φpi

(u′i(tj))vi(1)

−
1∫

0

φpi(u′i(t))v′i(t)dt−
m∑

j=1
∆φpi(u′i(tj))vi(tj) +

m∑

j=1
∆φpi(u′i(tj))vi(1)

= −
m∑

j=1
∆φpi

(u′i(tj))vi(tj)−
1∫

0

φpi
(u′i(t))v′i(t)dt

(2.8)

for i = 1, . . . , n. Substituting (2.8) into (2.5), we have

n∑

i=1

1∫

0

(−(φpi ◦ u′i)′(t)− λFui
(t, u1(t), . . . , un(t))− µGui

(t, u1(t), . . . , un(t))) vi(t)dt

+
n∑

i=1

m∑

j=1
[−∆φpi

(u′(tj))vi(tj) + Iij(ui(tj))vi(tj)] = 0
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for i = 1, . . . , n. Since u satisfies (2.7), we have

∆φpi
(u′(tj))vi(tj) = Iij(ui(tj))vi(tj), j = 0, 1, . . . ,m

for i = 1, . . . , n. So u is a classical solution of (φλ,µ).

Our main tool is Theorem 2.4 which has been obtained by Ricceri ([38, Theo-
rem 2]). It is as follows:

If X is a real Banach space, then denote by WX the class of all functionals
Φ : X → R possessing the following property: If {un} is a sequence in X converg-
ing weakly to u ∈ X with lim infn→∞ Φ(un) ≤ Φ(u), then {un} has a subsequence
converging strongly to u.

For example, if X is uniformly convex and g : [0,∞) → R is a continuous and
strictly increasing function, then, by a classical result, the functional u → g(‖u‖)
belongs to the class WX .
Theorem 2.4. Let X be a separable and reflexive real Banach space, let Φ : X → R be
a coercive, sequentially weakly lower semicontinuous C1-functional, belonging to WX ,
bounded on each bounded subset of X and whose derivative admits a continuous in-
verse on X∗, and let J : X → R be a C1-functional with compact derivative. Assume
that Φ has a strict local minimum u0 with Φ(u0) = J(u0) = 0. Finally, setting

ρ = max
{

0, lim sup
‖u‖→∞

J(u)
Φ(u) , lim sup

u→u0

J(u)
Φ(u)

}
,

σ = sup
u∈Φ−1((0,∞))

J(u)
Φ(u) ,

assume that ρ < σ. Then for each compact interval [c, d] ⊂ ( 1
σ ,

1
ρ ) (with the con-

ventions 1
0 = ∞, 1

∞ = 0), there exists R > 0 with the following property: for every
λ ∈ [c, d] and every C1-functional Ψ : X → R with compact derivative, there exists
γ > 0 such that, for each µ ∈ [0, γ],

Φ′(u) = λJ ′(u) + µΨ′(u)

has at least three solutions in X whose norms are less than R.
We refer the reader to the papers [22, 41] in which Theorem 2.4 was successfully

employed to ensure the existence of at least three solutions for boundary value prob-
lems.

Now for every u ∈ E, we define

Φ(u) :=
n∑

i=1

‖ui‖pi
pi

pi
+

n∑

i=1

m∑

j=1

ui(tj)∫

0

Iij(ζ)dζ, (2.9)

J(u) =
T∫

0

F (t, u1(t), . . . , un(t))dt (2.10)
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and

Ψ(u) =
T∫

0

G(t, u1(t), . . . , un(t))dt. (2.11)

Standard arguments show that Φ − µΨ − λJ is a Gâteaux differentiable functional
whose Gâteaux derivative at the point u ∈ E is given by

(Φ′ − µΨ′ − λJ ′)(u)(v)

=
1∫

0

[
n∑

i=1
φpi

(u′i(t))v′i(t)
]

dt− λ
1∫

0

n∑

i=1
Fui

(t, u1(t), . . . , un(t))vi(t)dt

− µ
1∫

0

n∑

i=1
Gui(t, u1(t), . . . , un(t))vi(t)dt+

n∑

i=1

m∑

j=1
Iij(ui(tj))vi(tj)

for all v = (v1, . . . , vn) ∈ W1,p1
0 ([0, 1]) ×W1,p2

0 ([0, 1]) × . . . ×W1,pn

0 ([0, 1]). Hence,
a critical point of the functional Φ− µΨ− λJ gives us a weak solution of (φλ,µ), and
in view of Lemma 2.3, every weak solution of the problem (φλ,µ) is a classical one.

We suppose that the impulsive terms satisfy the condition

(I) Iij : R → R is nondecreasing, Iij(0) = 0 and Iij(s)s > 0, s 6= 0 for i = 1, . . . , n
and j = 1, . . . ,m.

We need the following proposition in the proof of our main result.

Proposition 2.5. Assume that (H1) holds. Let S : E → E∗ be the operator defined
by

S(u)(v) =
1∫

0

[
n∑

i=1
φpi

(u′i(t))v′i(t)
]

dt+
n∑

i=1

m∑

j=1
Iij(ui(tj))vi(tj)

for every u, v ∈ E. Then, S admits a continuous inverse on E∗.
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Proof. In the proof, we use C1, C2 and C3 to denote appropriate positive constants.
By (I), we have

S(u)(u) =
n∑

i=1

1∫

0

φpi
(u′i(t))u′i(t)dt+

n∑

i=1

m∑

j=1
Iij(ui(tj))ui(tj)

=
n∑

i=1

1∫

0

|u′i(t)|pidt+
n∑

i=1

m∑

j=1
Iij(ui(tj))ui(tj)

≥
n∑

i=1







1∫

0

|u′i(t)|pidt




1/pi



pi

≥
n∑

i=1







1∫

0

|u′i(t)|pidt




1/pi



p

≥ C1




n∑

i=1




1∫

0

|u′i(t)|pidt




1/pi



p

= C1‖u‖p.

This implies that S is coercive. Now, for any u ∈ (u1, . . . , un) ∈ E and v ∈
(v1, . . . , vn) ∈ E, we have

〈S(u)− S(v), u− v〉 =
1∫

0

[
n∑

i=1
(φpi

(u′i(t))− φpi
(v′i(t))) (u′i(t)− v′i(t))

]
dt

+
n∑

i=1

m∑

j=1
(Iij(ui(t))− Iij(vi(t))) (ui(t)− vi(t)).

Then, by [40, Relation (2.2)] and (I), we see that

〈S(u)− S(v), u− v〉 ≥





C2
∑n
i=1

1∫
0
|u′i(t)− v′i(t)|pidt, p ≥ 2,

C3
∑n
i=1

1∫
0

|u′i(t)−v′i(t)|2
(|u′

i
(t)|+|v′

i
(t)|)2−pi

dt, p < 2.

(2.12)

Now by the same argument as given in the proof of [17, Lemma 2.6] and the condition
(H1), if p ≥ 2, we have that S is uniformly monotone. Moreover, since E is reflexive,
for un → u strongly in E as n→∞, one has S(un)→ S(u) weakly in E∗ as n→∞.
Hence, S is demicontinuous, so by [47, Theorem 26.A(d)], the inverse operator S−1 of
S exists and it is continuous on E∗. If p < 2, by (I) and by the same reasoning as in
the proof of [17, Lemma 2.6], S is strictly monotone. Thus, by [47, Theorem 26.A(d)],
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S−1 exists and it is bounded. So by [17, Relation (2.8)], S−1 is locally Lipschitz
continuous and hence continuous. This completes the proof.

Remark 2.6. Suppose that the condition (I) is replaced by the condition

(I’) Iij : R→ R is odd and nondecreasing in R for any i = 1, . . . , n and j = 1, . . . ,m.

Then the conclusion of Proposition 2.5 holds again. It is easy to see that the condition
(I’) implies the condition (I).

3. MAIN RESULTS

In this section, we formulate our main results. Let us denote by F the class of all
functions F : [0, 1] × Rn → R that are measurable with respect to t, for all ξ ∈ Rn,
continuously differentiable in ξ, for almost every t ∈ [0, 1], satisfy the standard summa-
bility condition (1.1). Set

A := 1
2

(
1 +

∑`
k=1 |ak|

|1−∑`
k=1 ak|

+
∑`
k=1 |bk|

|1−∑`
k=1 bk|

)
.

Let

λ1 = inf
u∈E

{∑n
i=1

‖ui‖pi
pi

pi
+
∑n
i=1
∑m
j=1

ui(tj)∫
0

Iij(ζ)dζ

1∫
0
F (t, u(t))dt

:
1∫

0

F (t, u(t))dt > 0
}

and λ2 = 1
max{0,λ0,λ∞} , where

λ0 = lim sup
|u|→0

1∫
0
F (t, u(t))dt

∑n
i=1

‖ui‖pi
pi

pi
+
∑n
i=1
∑m
j=1

ui(tj)∫
0

Iij(ζ)dζ

and

λ∞ = lim sup
‖u‖→∞

1∫
0
F (t, u(t))dt

∑n
i=1

‖ui‖pi
pi

pi
+
∑n
i=1
∑m
j=1

ui(tj)∫
0

Iij(ζ)dζ

with u = (u1, . . . , un).
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Theorem 3.1. Suppose that F ∈ F . Assume that
(A1) there exists a constant ε > 0 such that

max
{

lim sup
u→(0,...,0)

maxt∈[0,1] F (t, u)∑n
i=1 |ui|pi

, lim sup
|u|→∞

maxt∈[0,1] F (t, u)∑n
i=1 |ui|pi

}
< ε,

where u = (u1, . . . , un) with |u| =
√∑n

i=1 u
2
i ;

(A2) there exists a function w ∈ E such that

n∑

i=1

‖wi‖pi
pi

pi
+

n∑

i=1

m∑

j=1

wi(tj)∫

0

Iij(ζ)dζ 6= 0

and

Apε <

1∫
0
F (t, w(t))dt

∑n
i=1

‖wi‖pi
pi

pi
+
∑n
i=1
∑m
j=1

wi(tj)∫
0

Iij(ζ)dζ
.

Then, for each compact interval [c, d] ⊂ (λ1, λ2), there exists R > 0 with the following
property: for every λ ∈ [c, d] and every G ∈ F , there exists γ > 0 such that, for each
µ ∈ [0, γ], the system (φλ,µ) has at least three classical solutions whose norms in E
are less than R.
Proof. Take X = E. Clearly, X is a separable and uniformly convex Banach space.
Let the functionals Φ, J and Ψ be as given in (2.9), (2.10) and (2.11), respectively.
The functional Φ is C1, and due to Proposition 2.5 its derivative admits a contin-
uous inverse on X∗. Moreover, by the sequentially weakly lower semicontinuity of∑n
i=1

‖ui‖pi
pi

pi
and the continuity of Iij , i = 1, . . . , n, j = 1, . . . ,m, Φ is sequentially

weakly lower semicontinuous in X. On the other hand, we let ‖ui‖pi
> 1, i = 1, . . . , n,

by (I),

Φ(u) =
n∑

i=1

‖ui‖pi
pi

pi
+

n∑

i=1

m∑

j=1

ui(tj)∫

0

Iij(ζ)dζ ≥
n∑

i=1

‖ui‖pi
pi

pi
≥ 1
p
‖u‖p (3.1)

for every u = (u1, . . . , un) ∈ X. Thus Φ is coercive. Moreover, let M be a bounded
subset of X. That is, there exist constants ci > 0, i = 1, . . . , n such that ‖ui‖i ≤ ci
for each u ∈M . Then, we have

|Φ(u)| ≤ 1
p

n∑

i=1

{
‖ci‖p, if ‖ui‖i ≤ 1,
‖ci‖p, if ‖ui‖i > 1.

Hence Φ is bounded on each bounded subset of X. Furthermore, Φ ∈ WX . Indeed,
let the sequence

{uk}∞k=1 = {(uk1, . . . , ukn)}∞k=1 ⊂ X, u = (u1, . . . , un) ⊂ X, uk ⇀ u



366 Martin Bohner, Shapour Heidarkhani, Amjad Salari, and Giuseppe Caristi

and lim infk→∞ Φ(uk) ≤ Φ(u). Since the function Iij is continuous, i = 1, . . . , n,
j = 1, . . . ,m, one has

lim inf
n→∞

n∑

i=1

‖uki‖pi
pi

pi
≤

n∑

i=1

‖ui‖pi
pi

pi
.

Thus, {uk}∞k=1 has a subsequence converging strongly to u. Therefore, Φ ∈ WX . The
functionals J and Ψ are two C1-functionals with compact derivatives. Moreover, Φ has
a strict local minimum 0 with Φ(0) = J(0) = 0. In view of (A1), there exist τ1, τ2
with 0 < τ1 < τ2 such that

F (t, u) ≤ ε
n∑

i=1
|ui|pi (3.2)

for every t ∈ [0, 1] and every u = (u1, . . . , un) with |u| ∈ [0, τ1) ∪ (τ2,∞). By (1.1),
F (t, u) is bounded on [0, 1]× [τ1, τ2]. Thus we can choose η > 0 and υ > p such that

F (t, u) ≤ ε
n∑

i=1
|ui|pi + η

n∑

i=1
|ui|υ

for all (t, u) ∈ [0, 1]× Rn. So, by (2.2), we have

J(u) ≤ Aε
n∑

i=1
‖ui‖pi

pi
+ η

n∑

i=1
Aυ/pi‖ui‖υpi

(3.3)

for all u ∈ X. Hence, from (3.3), we have

lim sup
|u|→0

J(u)
Φ(u) ≤ Apε. (3.4)

Moreover, by using (3.2), for each u ∈ X \ {0}, we obtain

J(u)
Φ(u) =

∫
|u|≤τ2

F (t, u(t))dt

Φ(u) +

∫
|u|>τ2

F (t, u(t))dt

Φ(u)

≤
supt∈[0,1],|u|∈[0,τ2] F (t, u)

Φ(u) +
Aε
∑n
i=1 ‖ui‖pi

pi

Φ(u)

≤
supt∈[0,1],|u|∈[0,τ2] F (t, u)

∑n
i=1

‖ui‖pi
pi

pi

+Apε.

So, we get
lim sup
‖u‖→∞

J(u)
Φ(u) ≤ Apε. (3.5)

In view of (3.4) and (3.5), we have

ρ = max
{

0, lim sup
‖u‖→∞

J(u)
Φ(u) , lim sup

u→(0,...,0)

J(u)
Φ(u)

}
≤ Apε. (3.6)
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Assumption (A2) in conjunction with (3.6) yields

σ = sup
u∈Φ−1((0,∞))

J(u)
Φ(u) = sup

X\{0}

J(u)
Φ(u)

≥

1∫
0
F (t, w(t))dt

Φ(w(t)) =

1∫
0
F (t, w(t))dt

∑n
i=1

‖wi‖pi
pi

pi
+
∑n
i=1
∑m
j=1

wi(tj)∫
0

Iij(ζ)dζ
> Apε ≥ ρ.

Thus, all the hypotheses of Theorem 2.4 are satisfied. Clearly, λ1 = 1
β and λ2 = 1

α .
Then, using Theorem 2.4, taking Lemma 2.3 into account, for each compact interval
[c, d] ⊂ (λ1, λ2), there exists R > 0 with the following property: for every λ ∈ [c, d]
and every G ∈ F there exists γ > 0 such that, for each µ ∈ [0, γ], the system (φλ,µ)
has at least three classical solutions whose norms in E are less than R.

Another announced application of Theorem 2.4 reads as follows.

Theorem 3.2. Suppose that F ∈ F . Assume that

max
{

lim sup
u→(0,...,0)

maxt∈[0,1] F (t, u)∑n
i=1 |ui|pi

, lim sup
|u|→∞

maxt∈[0,1] F (t, u)∑n
i=1 |ui|pi

}
< 0 (3.7)

where u = (u1, . . . , un) with |u| =
√∑n

i=1 u
2
i , and

sup
u∈E

1∫
0
F (t, u(t))dt

∑n
i=1

‖ui‖pi
pi

pi
+
∑n
i=1
∑m
j=1

ui(tj)∫
0

Iij(ζ)dζ
> 0. (3.8)

Then for each compact interval [c, d] ⊂ (λ1,∞) there exists R > 0 with the following
property: for every λ ∈ [c, d] and every G ∈ F , there exists γ > 0 such that for each
µ ∈ [0, γ], the system (φλ,µ) has at least three classical solutions whose norms in E
are less than R.

Proof. In view of (3.7), there exist an arbitrary ε > 0 and τ1, τ2 with 0 < τ1 < τ2
such that

F (t, u) ≤ ε
n∑

i=1
|ui|pi

for every t ∈ [0, 1] and every u = (u1, . . . , un) with |u| ∈ [0, τ1) ∪ (τ2,∞). By (1.1),
F (t, u) is bounded on [0, 1]× [τ1, τ2]. Thus we can choose η > 0 and υ > p in a manner
that

F (t, u) ≤ ε
n∑

i=1
|ui|pi + η

n∑

i=1
|ui|υ
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for all (t, u) ∈ [0, 1] × Rn. So, by the same process as in the proof of Theorem 3.1,
we obtain (3.4) and (3.5). Since ε is arbitrary, (3.4) and (3.5) give

max
{

0, lim sup
‖u‖→+∞

J(u)
Φ(u) , lim sup

u→(0,...,0)

J(u)
Φ(u)

}
≤ 0.

Then, with the notation of Theorem 2.4, we have ρ = 0. By (3.8), we also have σ > 0.
In this case, clearly λ1 = 1

σ and λ2 = ∞. Thus, by using Theorem 2.4 and taking
Lemma 2.3 into account, the result is achieved.

Remark 3.3. Theorem 1.1 immediately follows from Theorem 3.2.
Remark 3.4. In Assumption (A2), if we choose

w(t) = w?(t) = (0, . . . , 0, wn(t)) (3.9)

with

wn(t) =





δ

(∑`
k=1 ak +

2
(

1−
∑`

k=1
ak

)

s1
t

)
, if t ∈ [0, s1

2 ),

δ, if t ∈ [ s1
2 ,

1+s`

2 ],

δ

( 2−
∑`

k=1
bk−s`

∑`

k=1
bk

1−s`
−

2(1−
∑`

k=1
bk)

1−s`
t

)
, if t ∈ ( 1+s`

2 , 1],

(3.10)

where δ > 0, then (A2) takes the following form:
(A′2) there exists a positive constant δ such that

(ωnδ)pn + pn

m∑

j=1

wn(tj)∫

0

Inj(ζ)dζ 6= 0

and

Apε <

pn
1∫
0
F (t, w?(t))dt

(ωnδ)pn + pn
∑m
j=1

wn(tj)∫
0

Inj(ζ)dζ
.

Clearly, w? ∈ E and

Φ(w?) = (ωnδ)pn

pn
+

m∑

j=1

wn(tj)∫

0

Inj(ζ)dζ,

where

ωn :=
[

2pn−1

(
s1−pn

1

∣∣∣∣∣1−
∑̀

k=1
ak

∣∣∣∣∣

pn

+ (1− s`)1−pn

)∣∣∣∣∣1−
∑̀

k=1
bk

∣∣∣∣∣

pn
]1/pn

.
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Now, we point out some results in which the function F has separated variables.
To be precise, we consider the system





−(φpi(u′i))′ = λθ(t)Fui(u1, . . . , un) + µGui(t, u1, . . . , un), t ∈ (0, 1) \Q,
∆φpi

(u′i(tj)) = Iij(ui(tj)), j = 1, . . . ,m,
ui(0) =

∑`
k=1 akui(sk), ui(1) =

∑`
k=1 bkui(sk),

(φθλ,µ)

where θ : [0, 1] → R is a nonzero function such that θ ∈ L1([0, 1]) and F : Rn → R
is a C1-function and G : [0, 1] × Rn → R is as introduced for the system (φλ,µ) in
Section 1.

Set F (t, x1, . . . , xn) = θ(t)F (x1, . . . , xn) for every (t, x1, . . . , xn) ∈ [0, 1] × Rn.
The following existence results are consequences of Theorem 3.1.

Theorem 3.5. Assume that

(A′1) there exists a constant ε > 0 such that

sup
t∈[0,1]

θ(t).max
{

lim sup
u→(0,...,0)

F (u)∑n
i=1 |ui|pi

, lim sup
|u|→∞

F (u)∑n
i=1 |ui|pi

}
< ε,

where u = (u1, . . . , un) with |u| =
√∑n

i=1 u
2
i ;

(A′′2) there exists a positive constant δ such that

(ωnδ)pn + pn

m∑

j=1

wn(tj)∫

0

Inj(ζ)dζ 6= 0

and

Apε <

pn
1∫
0
F (t, w?(t))dt

(ωnδ)pn + pn
∑m
j=1

wn(tj)∫
0

Inj(ζ)dζ

where w? and ωn are given by (3.9) and (3.10), respectively.

Then, for each compact interval [c, d] ⊂ (λ3, λ4), where λ3 and λ4 are the same as λ1
and λ2, but

∫ 1
0 F (t, u(t))dt is replaced by

∫ 1
0 θ(t)F (u(t))dt, respectively, there exists

R > 0 with the following property: for every λ ∈ [c, d] and every G ∈ F , there
exists γ > 0 such that for each µ ∈ [0, γ], the system (φθλ,µ) has at least three classical
solutions whose norms in E are less than R.

Theorem 3.6. Assume that there exists a positive constant δ such that

(ωnδ)pn + pn

m∑

j=1

wn(tj)∫

0

Inj(ζ)dζ > 0 and
1∫

0

θ(t)F (w?(t))dt > 0, (3.11)
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where w? and ωn are given by (3.9) and (3.10), respectively. Moreover, suppose that

lim sup
u→(0,...,0)

F (u)∑n
i=1 |ui|pi

= lim sup
|u|→∞

F (u)∑n
i=1 |ui|pi

= 0, (3.12)

where u = (u1, . . . , un) with |u| =
√∑n

i=1 u
2
i . Then, for each compact interval [c, d] ⊂

(λ3,∞) where λ3 is the same as λ1 but
∫ 1

0 F (t, u(t))dt is replaced by
∫ 1

0 θ(t)F (u(t))dt,
there exists R > 0 with the following property: for every λ ∈ [c, d] and every G ∈ F ,
there exists γ > 0 such that for each µ ∈ [0, γ], the system (φθλ,µ) has at least three
classical solutions whose norms in E are less than R.
Proof. We easily observe that, from (3.12), the assumption (A′1) is satisfied for every
ε > 0. Moreover, using (3.11), by choosing ε > 0 small enough, one can derive the
assumption (A′′2). Hence, the conclusion follows from Theorem 3.5.

Now, we exhibit an example in which the hypotheses of Theorem 3.6 are satisfied.
Example 3.7. Let n = 2, p1 = p2 = 2, m = l = 1, t1 = 1

3 , s1 = 1
2 , a1 = b1 = 2 and

I11(x) = I21(x) = x3 for each x ∈ R. Let θ(t) = [t] + 1 for all t ∈ [0, 1], where [t] is
the integer part of t and

F (x1, x2) =
{

(x2
1 + x2

2)2, if x2
1 + x2

2 < 1,
1, if x2

1 + x2
2 ≥ 1.

By choosing δ = 1, we have w(t) = w?(t) = (0, w2(t)) with

w2(t) =





2(1− 2t) if t ∈ [0, 1
4 ),

1 if t ∈ [ 1
4 ,

3
4 ],

−2(1− 2t) if t ∈ ( 3
4 , 1],

and ω2 = 2
√

2. Thus we have

(ω2δ)p2 + p2

m∑

j=1

w2(tj)∫

0

I2j(ζ)dζ = (2
√

2)2 + 2
1∫

0

ζ3dζ = 17
2 > 0,

1∫

0

θ(t)F (w?(t))dt =

1
4∫

0

F (0, 2(1− 2t))dt+

3
4∫

1
4

F (0, 1)dt+
1∫

3
4

F (0,−2(1− 2t))dt

=

1
4∫

0

16(1− 2t)4dt+

3
4∫

1
4

dt+
1∫

3
4

dt = 23
10 > 0,

lim
(u1,u2)→(0,0)

F (u1, u2)
u2

1 + u2
2

= lim
(u1,u2)→(0,0)

(u2
1 + u2

2)2

u2
1 + u2

2
= lim

(u1,u2)→(0,0)
(u2

1 + u2
2) = 0,
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and
lim
|u|→∞

F (u1, u2)
u2

1 + u2
2

= lim
|u|→∞

1
u2

1 + u2
2

= 0,

where u = (u1, u2) with |u| =
√
u2

1 + u2
2. Hence, by applying Theorem 3.6 for each

compact interval [c, d] ⊂ (0,∞), there exists R > 0 with the following property: for
every λ ∈ [c, d] and every G ∈ F , there exists γ > 0 such that, for each µ ∈ [0, γ],
the system





−u′′1(t) = λ([t] + 1)Fu1(u1, u2) + µGu1(t, u1, u2), t ∈ (0, 1) \ { 1
3},

−u′′2(t) = λ([t] + 1)Fu2(u1, u2) + µGu2(t, u1, u2), t ∈ (0, 1) \ { 1
3},

u′1( 1
3

+)− u′1( 1
3
−) = (u1( 1

3 ))3,

u′2( 1
3

+)− u′2( 1
3
−) = (u2( 1

3 ))3,

u1(0) = 2u1( 1
2 ), u1(1) = 2u1( 1

2 ),
u2(0) = 2u2( 1

2 ), u2(1) = 2u2( 1
2 )

has at least three classical solutions whose norms in the space

Ẽ =
{

(ξ1, ξ2) ∈W1,2([0, 1])×W1,2([0, 1]) : ξ1(0) = ξ1(1) = 2ξ1
(

1
2

)
,

ξ2(0) = ξ2(1) = 2ξ2
(

1
2

)}

are less than R.

4. SINGLE IMPULSE

As an application of the results from Section 3, we consider the problem




−(φp(u′))′ = λf(t, u) + µg(t, u), t ∈ (0, 1) \ {t1},
∆φp(u′(t1)) = I(u(t1)),
u(0) = u(1) = u(s1),

(4.1)

where p > 1, 0 < t1, s1 < 1, t1 6= s1, φp(x) = |x|p−2x, λ > 0, µ ≥ 0, and f, g :
[0, 1]×R→ R are two L1-Carathéodory functions, ∆φpu′i(t1) = φpu

′(t+1 )− φpu′(t−1 ),
where u′(t+1 ) and u′(t−1 ) represent the right-hand limit and left-hand limit of u′(t) at
t = t1, respectively, and I : R → R is a continuous and nondecreasing function such
that I(0) = 0 and I(s)s > 0 for all s ∈ R \ {0}.

We introduce the functions F : [0, 1]×R→ R and G : [0, 1]×R→ R, respectively,
as

F (t, x) =
x∫

0

f(t, ζ)dζ for all (t, x) ∈ [0, 1]× R
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and

G(t, x) =
x∫

0

g(t, ζ)dζ for all (t, x) ∈ [0, 1]× R.

The following two theorems are consequences of Theorems 3.1 and 3.2, respectively.

Theorem 4.1. Assume that

(B1) there exists a constant ε > 0 such that

max
{

lim sup
u→0

maxt∈[0,1] F (t, u)
|u|p , lim sup

|u|→∞

maxt∈[0,1] F (t, u)
|u|p

}
< ε;

(B2) there exists a function w ∈ Ê, where

Ê =
{
ξ ∈W1,p([0, 1]) : ξ(0) = ξ(1) = ξ(s1)

}
,

such that

‖w‖pp + p

w(t1)∫

0

I(ζ)dζ 6= 0

and

p2ε <

2
1∫
0
F (t, w(t))dt

‖u‖pp + p
u(t1)∫

0
I(ζ)dζ

.

Then, for each compact interval [c, d] ⊂ (λ̄1, λ̄2), where

λ̄1 = inf
u∈Ê

{‖u‖pp + p
u(t1)∫

0
I(ζ)dζ

p
1∫
0
F (t, u(t))dt

:
1∫

0

F (t, u(t))dt > 0
}

and

λ̄2 = max





0, lim sup
|u|→0

p
1∫
0
F (t, u(t))dt

‖u‖pp + p
u(t1)∫

0
I(ζ)dζ

, lim sup
‖u‖p→∞

p
1∫
0
F (t, u(t))dt

‖u‖pp + p
u(t1)∫

0
I(ζ)dζ




,

there exists R > 0 with the following property: for every λ ∈ [c, d], there exists γ > 0
such that for each µ ∈ [0, γ], the problem (4.1) has at least three classical solutions
whose norms in Ê are less than R.
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Theorem 4.2. Assume that

max
{

lim sup
u→0

supt∈[0,1] F (t, u(t))
|u|p , lim sup

|u|→∞

supt∈[0,1] F (t, u(t))
|u|p

}
≤ 0

and

sup
u∈Ê

p
1∫
0
F (t, u(t))dt

‖u‖pp + p
u(t1)∫

0
I(ζ)dζ

> 0.

Then for each compact interval [c, d] ⊂ (λ̄1,∞), where λ̄1 is defined in Theorem 4.1,
there exists R > 0 with the following property: for every λ ∈ [c, d], there exists γ > 0
such that for each µ ∈ [0, γ], the problem (4.1) has at least three classical solutions
whose norms in Ê are less than R.

Now let f : R→ R be a continuous function. Put

F (x) =
x∫

0

f(ζ)dζ for all x ∈ R.

The following theorems are immediate consequences of Theorems 3.5 and 3.6, respec-
tively.
Theorem 4.3. Assume that
(B′1) there exists a constant ε > 0 such that

max
{

lim sup
u→0

F (u)
|u|p , lim sup

|u|→∞

F (u)
|u|p

}
< ε;

(B′′2 ) there exists a positive constant δ such that

2p(p−1)δp
(
s1−p

1 + (1− s1)1−p
)

+ p

δ∫

0

I(ζ)dζ 6= 0

and

pε <

2pn
1∫
0
F (w(t))dt

2p(p−1)δp
(
s1−p

1 + (1− s1)1−p
)

+ p
δ∫
0
I(ζ)dζ

,

where

w(t) =





2δ
s1
t, if t ∈ [0, s1

2 ),
δ, if t ∈ [ s1

2 ,
1+s1

2 ],
2δ

1−s1
(1− t), if t ∈ ( 1+s1

2 , 1].
(4.2)
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Then, for each compact interval [c, d] ⊂ (λ̄3, λ̄4), where λ̄3 and λ̄4 are the same as
λ̄1 and λ̄2, but

∫ 1
0 F (t, u(t))dt is replaced by

∫ 1
0 F (u(t))dt, respectively, there exists

R > 0 with the following property: for every λ ∈ [c, d] and every continuous function
g : R→ R, there exists γ > 0 such that for each µ ∈ [0, γ], the problem





−(φp(u′))′ = λf(u) + µg(u), t ∈ (0, 1) \ {t1},
∆φp(u′(t1)) = I(u(t1)),
u(0) = u(1) = u(s1)

(4.3)

has at least three classical solutions whose norms in Ê are less than R.

Theorem 4.4. Assume that there exists a positive constant δ such that

2p(p−1)δp
(
s1−p

1 + (1− s1)1−p
)

+ p

δ∫

0

I(ζ)dζ > 0 and
1∫

0

F (w(t))dt > 0,

where w is given by (4.2). Moreover, suppose that

lim sup
u→0

f(u)
|u|p−1 = lim sup

|u|→∞

f(u)
|u|p−1 = 0.

Then, for each compact interval [c, d] ⊂ (λ̄3,+∞), where λ̄3 is the same as λ̄1, but∫ 1
0 F (t, u(t))dt is replaced by

∫ 1
0 F (u(t))dt, there exists R > 0 with the following prop-

erty: for every λ ∈ [c, d] and every continuous function g : R→ R, there exists γ > 0
such that for each µ ∈ [0, γ], the problem (4.3) has at least three classical solutions
whose norms in Ê are less than R.

Finally, we present the following example in order to illustrate Corollary 4.4.

Example 4.5. Let p = 3, t1 = 2
3 , s1 = 1

2 , I(x) = 3
√
x for all x ∈ R and f(x) = −x3e−x

for all x ∈ R. By choosing δ = 1, we have

w(t) =





4t, if t ∈ [0, 1
4 ),

1, if t ∈ [ 1
4 ,

3
4 ],

4(1− t), if t ∈ ( 3
4 , 1].

Thus

2p(p−1)δp
(
s1−p

1 + (1− s1)1−p
)

+ p

δ∫

0

I(ζ)dζ = 29 + 3
1∫

0

3
√
ζdζ = 29 + 3

4 > 0,



Existence of three solutions for impulsive multi-point boundary value problems 375

1∫

0

F (w(t))dt = −

1
4∫

0

4t∫

0

ζ3e−ζdζdt−

3
4∫

1
4

1∫

0

ζ3e−ζdζdt−
1∫

3
4

4(1−t)∫

0

ζ3e−ζdζdt

=

1
4∫

0

[
e−4t(64t3 + 58t2 + 24t+ 6)− 6

]
dt+

(
16
e
− 6
) 3

4∫

1
4

dt

+ 2
e4

1∫

3
4

[
e4t(76− 166t+ 125t2 − 32t3)− 6

]
dt

= 29
6 + 8

e
− 1089

16e4 + 122
64e7 −

70
32e8 > 0.

Also limu→0
f(u)
|u|2 = lim|u|→∞ f(u)

|u|2 = 0. Hence, by applying Corollary 4.4 for each
compact interval [c, d] ⊂ (0,∞), there exists R > 0 with the following property: for
every λ ∈ [c, d] and every continuous function g : R → R, there exists γ > 0 such
that, for each µ ∈ [0, γ], the problem





−|u′1(t)|u′′1(t) = −λu(t)3e−u(t) + µg(u), t ∈ (0, 1) \ { 2
3},

|u′( 2
3

+)|u′( 2
3

+)− |u′( 2
3
−)|u′1( 2

3
−) = 3

√
u( 2

3 ),
u(0) = u(1) = u( 1

2 )

has at least three classical solutions whose norms in the space

Ẽ1 =
{
ξ ∈W1,3([0, 1]) : ξ(0) = ξ(1) = ξ

(
1
2

)}

are less than R.
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