PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on the purification capacity of rain garden paving structures for rainfall runoff pollutants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rain gardens are one of the best measures for rainfall runoff and pollutant abatement in sponge city construction. The rain garden system was designed and developed for the problem of severely impeded urban water circulation. The rain gardens monitored the rainfall runoff abatement and pollutant removal capacity for 46 sessions from January 2018 to December 2019. Based on these data, the impact of rain gardens on runoff abatement rate and pollutant removal rate was studied. The results obtained indicated that the rain garden on the runoff abatement rate reached 82.5%, except with extreme rainfall, all fields of rainfall can be effectively abated. The removal rate of suspended solid particles was the highest, followed by total nitrogen and total phosphorus, the total removal rate in 66.35% above. The rain garden is still in the “youth stage”, and all aspects of the operation effect are good.
Rocznik
Strony
28--36
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • East China University of Technology, Nanchang, China
autor
  • Nanchang Institute of Technology Poyang Lake Basin Water Engineering Safety and Effi cient Utilization National and Local Joint Engineering Laboratory, Nanchang, China
autor
  • Nanchang Institute of Technology Poyang Lake Basin Water Engineering Safety and Effi cient Utilization National and Local Joint Engineering Laboratory, Nanchang, China
autor
  •  Nanchang Institute of Technology Poyang Lake Basin Water Engineering Safety and Effi cient Utilization National and Local Joint Engineering Laboratory, Nanchang, China
Bibliografia
  • 1. Boogaard, F.C., Van, D.V.F., Langeveld, J.G., Kluck, J. & Van, D.G.N. (2015). Removal efficiency of storm water treatment techniques: standardized full scale laboratory testing. Urban Water Journal, 14(3–4):pp. 255–262, DOI: 10.1080/1573062X.2015.1092562
  • 2. Chahal, M.K., Shi, Z. & Flury, M. (2016). Nutrient leaching and copper speciation in compost-amended bioretention systems. Science of the Total Environment, 556, pp. 302–309, DOI: 10.1016/j.scitotenv.2016.02.125
  • 3. Davis, A.P., Traver, R.G., Hunt, W.F., Lee, R., Brown, R.A. & Olszewski, J.M. (2012). Hydrologic Performance of Bioretention Storm-Water Control Measures. Journal of Hydrologic Engineering, 17(5), pp. 604–614, DOI: 10.1061/(ASCE)HE.1943-5584.0000467
  • 4. Gao, Z., Zhang, Q,H., Xie, Y.D., Wang, Q., Dzakpasu, M., Xiong, J.Q. & Wang, X.C. (2022). A novel multi-objective optimization framework for urban green-gray infrastructure implementation under impacts of climate change. Science of The Total Environment, 825: pp. 153954, DOI: 10.1016/j.scitotenv.2022.153954
  • 5. Ghosh, S.P. & Maiti, S.K. (2018). Evaluation of heavy metal contamination in roadside deposited sediments and road surface runoff: a case study. Environmental Earth Sciences, 77(7):267, DOI: 10.1007/s12665-018-7370-1
  • 6. Guo, C., Li, J., Li, H., Zhang, B., Ma, M. & Li, F. (2018). Seven-Year Running Effect Evaluation and Fate Analysis of Rain Gardens in Xi’an, Northwest China. Water, 10(7), DOI: 10.3390/w10070944
  • 7. Guo, C., Li, J.K., Ma, Y., Li, H.E., Yuan, M. & Ji, G.Q. (2015). Operation life analysis and value estimation of rainwater garden. Journal of Environmental Science, 38(11), pp. 4391–4399. (in Chinese)
  • 8. Gupta, A., Thengane, S.K. & Mahajani, S. (2018). CO2 gasification of char from lignocellulosic garden waste: Experimental and kinetic study. Bioresource Technology, 263, pp. 180–191, DOI: 10.1016/j.biortech.2018.04.097
  • 9. Hess, A., Wadzuk, B. & Welker, A. (2021). Evapotranspiration estimation in rain gardens using soil moisture sensors. Vadose Zone Journal, DOI: 10.1002/vzj2.20100
  • 10. Hong, J., Geronimo, F.K., Choi, H. & Kim, L.H. (2018). Impacts of nonpoint source pollutants on microbial community in rain gardens. Chemosphere, 209, pp. 20–27, DOI: 10.1016/j.chemosphere.2018.06.062
  • 11. Hsieh, C. & Davis, A.P. (2005). Evaluation and optimization of bioretention media for treatment of urban storm water runoff. Journal of Environmental Engineering, 131(11), pp. 1521–1531, DOI: 10.1061/(ASCE)0733-9372(2005)131:11(1521)
  • 12. Jeong, H., Choi, J.Y., Lee, J., Lim, J. & Ra, R. (2020). Heavy metal pollution by road-deposited sediments and its contribution to total suspended solids in rainfall runoff from intensive industrial areas. Environmental Pollution, 265:15028, DOI: 10.1016/j.envpol.2020.115028
  • 13. Jiang, C.B., Li, J.K., Ma, Y., Li, H.E. & Ruan,T.S. (2012). The Regulating Effect of Rain Garden on Actual Rainfall Runoff. Journal of Soil and Water Conservation, 032(004), pp. 122–127. (in Chinese)
  • 14. Kim, L.H. (2021). Stormwater runoff treatment using rain garden: performance monitoring and development of deep learning-based water quality prediction models. Water, 13(24), 3488, DOI: 10.3390/w13243488
  • 15. Li, L. & Davis, A.P. (2014). Urban stormwater runoff nitrogen composition and fate in bioretention systems. Environmental Science & Technology, 2014, 48(6):3403, DOI: 10.1021/es4055302
  • 16. Ming-Han Li, Mark Swapp, Myung Hee Kim, Kung-Hui Chu, Chan Yong Sung (2014). Comparing bioretention designs with and without an internal water storage layer for treating highway runoff. Water Environment Research, 86(5), pp. 387–397, DOI: 10.2175/106143013X13789303501920
  • 17. Li, N., Meng, Y., Wang, J., Yu, Q. & Zhang, N.Q. (2008). Research on waterlogging reduction Effect of low-impact development measures – A Case study of ji nan sponge test Area. Journal of Water Resources, 49(12), pp. 1489–1502. (in Chinese)
  • 18. Luo, H.M., Che, W., Li, J.Q., Wang, H.L., Meng, G.H. & He, J.P.(2008). Application of rainwater garden in flood control and utilization. China Water supply and Drainage, 24(06), pp. 48–52. (in Chinese)
  • 19. Cheng, M., Qin, H.P., He, K.M. & Xu, H.L. (2018). Can floor-area-ratio incentive promote low impact development in a highly urbanized area? – A case study in Changzhou City, China. Frontiers of Environmental Science & Engineering, 12(2), pp. 1–8.
  • 20. Morales, V.L. , Gao, B. & Steenhuis, T.S. (2009). Grain Surface Roughness Effects on Colloidal Retention in the Vadose Zone. Vadose Zone Journal, 8(1), pp. 11–20, DOI: 10.2136/vzj2007.0171
  • 21. Palmer, E.T. , Poor, C.J. , Hinman, C. & Stark, J.D. (2013). Nitrate and Phosphate Removal through Enhanced Bioretention Media: Mesocosm Study. Water Environment Research, 85(9), pp. 823–832, DOI: 10.2175/106143013X13736496908997
  • 22. Sun, Y., Wei, X. & Pomeroy, C.A. (2011). Research Status and Prospect of storm and flood resource regulation measures for low-impact Development. Progress in water science, 22(02), pp. 287–293. (in Chinese)
  • 23. Tang, S.C., Luo, W., Jia, Z.H., Li, S., Wu, Y. & Zhou, M. (2015). Effect of rain garden on storm runoff reduction. Progress in water science, 26(06), pp. 787–794. (in Chinese)
  • 24. Tang, S.C., Luo, W., Jia, Z.H., Li, S. & Wu, Y. (2015). Effect of rain garden on the removal of nitrogen and phosphorus in different forms of occurrence and the effect of preferential flow in soil. Journal of water resources, 46(008), pp. 943–950. (in Chinese)
  • 25. Tang, S.C., Luo, W., Jia, Z.H. & Yuan, H.C. (2012). Experimental Study on infiltration rainwater Runoff storage in Xi ‘an Rainwater Garden. Journal of soil and water conservation, 26(06), pp. 75–79. (in Chinese)
  • 26. Tang, S.C., Luo, W., Jia, Z.H., Ma, X.Y. & Shao, Z.X. (2018). Influencing factors of rain garden operation effect based on drainable mod model. Progress in Water Science, 29(03), pp. 407–414. (in Chinese)
  • 27. Trowsdale, S.A. & Simcock, R. (2011). Urban stormwater treatment using bioretention. Journal of Hydrology, 397 (3–4), pp. 167–174, DOI: 10.1016/j.jhydrol.2010.11.023
  • 28. Wang, R.H.W. & Chiles, R. (2022). Ecosystem Benefits Provision of Green Stormwater Infrastructure in Chinese Sponge Cities. Environmental Management, 69(3), p. 558–575, DOI: 10.1007/s00267-021-01565-9
  • 29. Zhang, B.H., Deng, C.X., Ma, Y., Li, J.K., Jiang, C.B. & Ma, M.H. (2019). Retention and purification effect of rainwater garden on roof rainwater. China Water supply and Drainage, 21:29. (in Chinese)
  • 30. Zhang, J.Y., Wang, Y.T., Hu, Q.F. & He, R.M.(2016). Discussion on issues related to sponge city construction. Progress in water science, 27(06), pp. 793–799. (in Chinese)
Uwagi
Opracowane ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b32e2c14-a095-42fa-9baf-e76a41c70bc9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.