PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Description of the Yield State of Bioplastics on Examples of Starch-Based Plastics and PLA/PBAT Blends

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present work concerns the description of the yield state of biodegradable materials. As examples, biodegradable polymers are chosen – cornpole CRP-M2, starch fatty acid ester, and PLA/PBAT, poly(lactic acid) (PLA) blended with poly(butylene adipate/terephthalate) (PBAT) [1, 2]. These biodegradable, plant-derived bioplastics are a promising alternative to petroleum-based plastics. To describe the onset of plasticity in the bioplastics under discussion, Burzyński ’s hypothesis of material effort has been applied [3, 4]. The applied criteria account for the strength differential effect and for the shear correction resulting from the difference between experimental and theoretical values obtained as a result of the Huber-Mises approach [5, 6]. In general, these properties of yield state are characteristic for polymers. The description of yield state for bioplastics is an issue that has hardly been investigated, which illustrates the novel nature of this paper where this topic is discussed.
Rocznik
Strony
329–--354
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr.
Twórcy
autor
  • French-German Research Institute of Saint-Louis (ISL) 5 rue du G´en´eral Cassagnou, 68301 Saint-Louis, France
autor
  • Nagoya Institute of Technology Department of Mechanical Engineering Gokiso-cho Showa-ku, Nagoya, Aichi, 466-8555, Japan
autor
  • Laboratory of Mechanics, Biomechanics, Polymers and Structures (LaBPS) National Engineering School of Metz (ENIM) Route d’Ars Laquenexy, 57000 Metz, France
  • Institute of Fundamental Technological Research Polish Academy of Sciences A. Pawińskiego 5B, 02-106 Warszawa, Poland
autor
  • Aichi Center for Industry and Science Technology 1267-1 Akiai, Yakusa-cho, Toyota-shi, Aichi, 470-0356, Japan
Bibliografia
  • 1. http://www.epa.gov/
  • 2. http://www.nihon-cornstarch.com/product/bio plastic/tabid/160/Default.aspx#1
  • 3. Burzyński W.T., Studjum nad hipotezami wytężenia, Akademja Nauk Technicznych, Lwów 1928; also Dzieła Wybrane, Polska Akademia Nauk, PWN Warszawa 1982; also Selected passages from Włodzimierz Burzyński’s doctoral dissertation: Study on material effort hypotheses, Engng. Trans., 57, 1, 185–215, 2009.
  • 4. Burzyński W.T., Teoretyczne podstawy hipotez wytężenia, Czasopismo Techniczne 47, 1- 4, 1929; English translation: Theoretical foundations of the hypotheses of material effort, Engng. Trans., 56, 1, 269–305, 2008.
  • 5. Huber M.T., Właściwa praca odkształcenia jako miara wytężenia materyału. Przyczynek do podstaw teoryi wytrzymałości, Czasopismo Techniczne, XXII, 1904; also Specific work of strain as a measure of material effort, Arch. Mech., 56, 173–190, 2004.
  • 6. von Mises R., Mechanik der festen K¨orper im plastisch-deformablen Zustand, volume 1, G¨ottin. Nachr. Math. Phys., 1913.
  • 7. Bahlouli N., Pessey D., Raveyre C., Guillet J., Ahzi S., Dahoun A., Hiver J.M., Recycling effects on the rheological and thermomechanical properties of polypropylene-based composites, Mater. Des., 33, 1, 451–8, 2012
  • 8. Nishida M., Ichihara H., Fukada N., Evaluation of dynamic compressive properties of PLA/PBAT polymer alloys using split Hopkinson pressure bar method, Engng. Trans., 59, 1, 21–30, 2011.
  • 9. Nishida M., Ichihara H., Watanabe H., Fukuda N., Ito H., Effect of Dialkyl Peroxide blending on tensile properties of PLA/PBAT polymer alloys, Engng. Trans., 60, 2, 171–84, 2012.
  • 10. Otey F.H., Westhoff R.P., Biodegradable film compositions prepared from starch and copolymers of ethylene and acrylic acid, U.S. Patent, 4, 133, 784, 1979.
  • 11. Narayan R., Drivers for biodegradable/compostable plastics and role of composting in waste management and sustainable agriculture, Bioprocessing of Solid Waste and Sludge, 11, 1, 2001.
  • 12. Avella M., Errico M.E., Rimedio R., Sadocco P., Preparation of biodegradable polyesters/high-amylose-starch composites by reactive blending and their characterization, J. Appl. Polym. Sci., 83, 1432–42, 2002.
  • 13. Averous L., Biodegradable multiphase systems based on plasticized starch, J. Macromol. Sci., 44, 3, 231–74, 2004.
  • 14. Gaspar M., Benko Z., Dogossy G., Reczey K., Czigany T. ˝ , Reducing water absorption in compostable starch-based plastics, Polym. Degrad. Stab., 90, 3, 563–9, 2005.
  • 15. Malhotra S.V., Kumar V., East A., Jaffe M., Applications of corn-based chemistry, Bridge Washington National Academy of Engineering, 37, 4–17, 2007.
  • 16. Nishida M., Ito N., Kawase H., Tanaka K., Effects of Temperature on Dynamic Properties of a Biodegradable Polymer Made from Corn Starch, J. Solid Mech. Mater. Eng., 3, 2, 287–94, 2009.
  • 17. Nampoothiri K.M., Nair N.R., John R.P., An overview of the recent developments in polylactid (PLA) research, Bioresource Technol., 101, 8493–501, 2010.
  • 18. Anders S., Mikael S., Properties of lactic acid based polymers and their correlation with composition, Prog. Polym. Sci., 27, 1123–63, 2002.
  • 19. Van de Velde K., Kiekens P., Biopolymers: overview of several properties and consequences on their applications, Polym. Test., 21, 433–44, 2002.
  • 20. Carrasco F., Pages P., Gamez-Perez J., Santana O., Maspoch M., Processing of poly (lactic acid): Characterization of chemical structure, thermal stability and mechanical properties, Polym. Degrad. Stab., 95, 2, 116–25, 2010.
  • 21. Weng Y.X., Jin Y.J., Meng Q.Y., Wang L., Zhang M., Wang Y.Z., Biodegradation behaviour of poly (butylene adipate-co-terephthalate)(PBAT), poly (lactic acid)(PLA), and their blend under soil conditions, Polym. Test., 32, 5, 918–26, 2013.
  • 22. Yamura T., Omiya M., Sakai T., Viot P., Evaluation of compressive properties of PLA/PBAT polymer blends, Asian Pacific Conference for Materials and Mechanics, 2009.
  • 23. Liu H., Jinwen Z., Research progress in toughening modification of poly (lactic acid), J. Polym. Sci., Part B: Polym. Phys., 49, 15, 1051–83, 2011.
  • 24. Yeh J., Tsou C., Huang C., Chen K., Wu C., Chai W., Compatible and crystallization properties of poly(lacticacid)/poly(butylene adipate-co-terephthalate) blends, J. Appl. Polym. Sci., 116, 680–87, 2010.
  • 25. Li K., Peng J., Turng L., Huan H., Dynamic rheological behaviour and morphology of polylactide/poly(butylenes adipate-co-terephthalate) blends with various composition ratios, Adv. Polym. Tech., 30, 2, 150–7, 2011.
  • 26. Kanzawa T., Tokumitsu K., Mechanical properties and morphological changes of poly(lactic acid)/polycarbonate/poly(-butylene adipate-coterephthalate) blend through reactive processing, J. Appl. Polym. Sci., 121, 2908–18, 2011.
  • 27. Sharper W., Experimental Solid Mechanics, Springer-Verlag, 2008.
  • 28. Spitzig W.A., Richmond O., Effect of hydrostatic pressure on the deformation behaviour of polyethylene and polycarbonate in tension and in compression, Polym. Eng. Sci., 19, 16, 1129–39, 1979.
  • 29. Mulliken A.D., Boyce M.C., Mechanics of the rate-dependent elastic-plastic deformation of glassy polymers from low to high strain rates, Int. J. Sol. Struct., 43, 5, 1331–56, 2006.
  • 30. Siviour C.R., Walley S.M., Proud W.G., Field J.E., The high strain rate compressive behaviour of polycarbonate and polyvinylidene difluoride, Polym., 46, 26, 12546–55, 2005.
  • 31. Richeton J., Ahzi S., Vecchio K.S., Jiang F.C., Adharapurapu R.R., Influence of temperature and strain rate on the mechanical behaviour of three amorphous polymers: Characterization and modeling of the compressive yield stress, Int. J. Sol. Struct., 43, 7, 2318–35, 2006.
  • 32. Sarva S., Boyce M., Mechanics of polycarbonate during high-rate tension, J. Mech. Mat. Struct., 2, 10, 1853–80, 2007.
  • 33. Hu L.W., Pae K.D., Inclusion of the hydrostatic stress component in formulation of the yield condition, J. of the Franklin Institute, 275, 6, 491–502, 1963.
  • 34. Raghava R.S., Caddell R.M., Atkins A.G., Pressure dependent yield criteria for polymers, Mater. Sci. Eng., A, 13, 2, 113–20, 1974.
  • 35. Ghorbel E., A viscoplastic constitutive model for polymeric materials, Int. J. Plast., 24, 11, 2032–58, 2008.
  • 36. Fras T., Modelling of plastic yield surface of materials accounting for initial anisotropy and strength differential effect on the basis of experiments and numerical simulation, Phd Thesis, University of Lorraine, 2013.
  • 37. Tresca H., M´emoire sur l’´ecoulement des corps solides soumis a de fortes pressions, C.R. Acad. Sci. Paris, 24, 1864.
  • 38. Bowden P.B., Jukes J.A., The plastic yield behaviour of polymethylmethacrylate, J. Mater. Sci., 3, 2, 183–90, 1968.
  • 39. Silano A.A., Pae K.D., Sauer J.A., Effects of hydrostatic pressure on shear deformation of polymers, J. Appl. Phys., 48, 10, 4076–84, 1977.
  • 40. Raniecki B., Mróz Z., Yield or martensitic phase transformation conditions and dissipation functions for isotropic, pressure-insensitive alloys exhibiting SD effect, Acta Mech., 195, 1–4, 1–22, 2008.
  • 41. Khan A.S., Farrokh B., A strain rate dependent yield criterion for isotropic polymers: low to high rates of loading, Eur. J Mech. A/Sol., 29, 2, 274–82, 2010.
  • 42. Nalepka K., Pęcherski R.B., Fras T., Nowak M., Inelastic flow and failure of metallic solids. Material effort: study across scales, T. Łodygowski, A. Rusinek [Eds.], CISM, 552, Udine, 245–285, 2014.
  • 43. Pieczyska E.A., Pęcherski R.B., Gadaj S.P., Nowacki W.K., Nowak Z., Matyjewski M., Experimental and theoretical investigations of glass-fibre reinforced composite subjected to uniaxial compression for a wide spectrum of strain rates, Arch. Mech., 58, 273–291, 2006.
  • 44. Klepaczko J.R., An experimental technique for shear testing at high and very high strain rates. The case of mild steel, Int. J. Impact Eng., 15, 1, 25–39, 1994.
  • 45. Rusinek A., Klepaczko J.R., Shear testing of a sheet steel at wide range of strain rates and a constitutive relation with strain rate and temperature dependence of the flow stress, Int. J. Plast., 17, 1, 87–115, 2001.
  • 46. Fras T., Pęcherski R.B., Applications of Burzyński hypothesis of materials effort for isotropic solids, Mechanics and Control, 25, 2, 45–50, 2010.
  • 47. Fras T., Kowalewski Z., Pęcherski R.B., Rusinek A., Applications of Burzyński failure criterion. Part I. Isotropic materials with asymmetry of elastic range, Engng, Trans., 58, 1–2, 3–13, 2010.
  • 48. Vadillo G., Fernandez-Saez J., Pęcherski R.B., Some applications of Burzyński yield condition in metal plasticity, Mater. Des., 32, 628–35, 2011.
  • 49. Boumbimba R.M., Wang K., Bahlouli N., Ahzi S., R´emond Y., Addiego F., Experimental investigation and micromechanical modeling of high strain rate compressive yield stress of a melt mixing polypropylene organoclay nanocomposites, Mech. Mater., 52, 1, 58–68, 2012.
  • 50. Pęcherski R.B., Burzyński yield condition vis-`a-vis the related studies reported in the literature, Engng. Trans., 56, 383–391, 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b32b3590-454a-4ee4-bf01-fecc76ce6663
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.