PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the presence of carbon dioxide on chemical composition of water in contact with mining waste

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays post mining areas are often reclaimed and used housing areas, sports areas and recreational areas. Mining waste weathering is a significant factor influencing the condition of the surrounding water and soil environment. It is necessary then to evaluate susceptibility of the waste to weathering in given conditions and predict the rate of the processes. The paper presents initial results of an experimental study evaluating the influence of the presence of CO2 on the composition of leachate obtained when mining waste is exposed to water. The results of the experiments confirm the importance of the oxidation of pyrite and dissolution of carbonate minerals in changing the pH of water interacting with the waste.
Słowa kluczowe
Rocznik
Strony
38--45
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
  • Department of Post-Industrial Sites and Waste Management, Central Mining Institute, Katowice, Poland
Bibliografia
  • 1.Antonijevic, M. M., Dimitrijevic, M., & Jankovic, Z. (1997). Leaching of pyrite with hydrogen peroxide in sulphuric acid. Hydrometallurgy, 46(2), 71e83. http://dx.doi.org/10.1016/S0304-386X(96)00096-5.
  • 2.Appelo, C. A. J., & Postma, D. (2005). Geochemistry, groundwater and pollution (2nd ed.). Great Britain: A.A. Balkema Publishers.
  • 3.Bethke, C. M. (2008). Geochemical and biogeochemical reaction modeling (2nd ed.). New York: Cambridge University Press.
  • 4.Bhargava, S. K., Garg, A., & Subasinghe, N. D. (2009). In situ hightemperature phase transformation studies on pyrite. Fuel, 88(6), 988e993. http://dx.doi.org/10.1016/j.fuel.2008.12.005.
  • 5.Brunner, B., Yu, J.-Y., Mielke, R. E., Mac Askill, J. A., Madzunkov, S., McGenity, T. J., et al. (2008). Different isotope and chemical patterns of pyrite oxidation related to lag and exponential growth phases of Acidithiobacillus ferrooxidans reveal a microbial growth strategy. Earth and Planetary Science Letters, 270, 63e72.
  • 6.Dengxin, L., Jinsheng, G., & Guangxi, Y. (2003). Catalytic oxidation and kinetics of oxidation of coal-derived pyrite by electrolysis. Fuel Processing Technology, 82(1), 75e85. http://dx.doi.org/10.1016/S0378-3820(03)00040-7.
  • 7.Dimitrijevic, M., Antonijevic, M. M., & Jankovic, Z. (1996). Kinetics of pyrite dissolution by hydrogen peroxide in prchloric acid. Hydrometallurgy, 42(3), 377e386. http://dx.doi.org/10.1016/0304-386X(95)00094-W.
  • 8.Dixon, J. B., Hossner, L. R., Senkayi, A. L., & Egashira, K. (1982). Mineralogical properties of lignite overburden as they relate to mine spoil reclamation. In J. A. Kittrick, D. S. Fanning, & L. R. Hossner (Eds.), Acid sulfate weathering (pp. 169e191). Madison: Soil Science Society of America Special Publication 10.
  • 9.Dulewski, J., Madej, B., & Uzarowicz, R. (2010). Zagrożenie procesami termicznymi obiektów zagospodarowania odpadów z górnictwa węgla kamiennego [The hazards of heating processes in the facilities of coal mining waste management]. Gospodarka Surowcami Mineralnymi, 26(3), 125e141.
  • 10.Ekinci, Z., Colak, S., Cakici, A., & Sarac, H. (1998). Leaching kinetics of sphalerite with pyrite in chlorine saturated water. Minerals Engineering, 11(3), 279e283. http://dx.doi.org/10.1016/S0892-6875(98)00006-5.
  • 11.Fegley, B., Jr., & Lodders, K. (1995). The rate of pyrite decomposition on the surface of Venus. Icarus, 115(1),159e180. http://dx.doi.org/10.1006/icar.1995.1086.
  • 12.Ferrow, E. A., Mannerstran, M., & Sjooberg, B. (2005). Reaction kinetics and oxidation mechanisms of the conversion of pyrite to ferrous sulphate: a Mossbauer spectroscopy study. Hyperfine Interactions, 163(1e4), 109e119. http://dx.doi.org/10.1007/s10751-005-9200-6.
  • 13.Guo, W. X., & Parizek, R. R. (1994). Field-research on thermal anomalies indicating sulfide-oxidation in mine spoil. In D. W. Blowes, & C. N. Alpers (Eds.), Environmental geochemistry of sulphide oxidation. Washington: Wiley-VCH.
  • 14.Guo, W. X., Parizek, R. R., & Rose, A. W. (1994). The role of thermal-convection in resupplying O2 to strip coal-mine spoil. Soil Science, 158(1), 47e55.
  • 15.Gwoździewicz, M., & Jary, G. (2007). Rozprzestrzenianie chlorków i siarczanów w strefie aeracji składowiska odpadów powęglowych oraz kinetyka rozkładu siarczków i zakwaszania środowiska gruntowo-wodnego [Distribution of chlorides and sulfates in the aeration zone of coal waste landfill and sulfides decomposition kinetics and groundwater environment acidification]. Prace Naukowe Instytutu Górnictwa Politechniki Wrocławskiej. Konferencje, 120(49), 125e133.
  • 16.Hao, J., Murphy, R., Lim, E., Schoonen, M. A. A., & Strongin, D. R. (2009). Effects of phospholipid on pyrite oxidation in the presence of autotrophic and heterotrophic bacteria. Geochimica et Cosmochimica Acta, 73(14), 4111e4123.http://dx.doi.org/10.1016/j.gca.2009.04.003.
  • 17.Jambor, J. L., Nordstrom, D. K., & Alpers, C. N. (2000). Metal-sulfate salts from sulfide mineral oxidation. In C. N. Alpers, J. L. Jambor, & D. K. Nordstrom (Eds.), Reviews in mineralogy & geochemistry 40Sulfate minerals: Crystallography, geochemistry, and environmental significance (pp. 303e350).
  • 18.Kadioglu, Y., Karaca, S., & Bayrakceken, S. (1995). Kinetics of pyrite oxidation in aqueous suspension by nitric acid. Fuel Processing Technology, 41(3), 273e287. http://dx.doi.org/10.1016/0378-3820(94)00101-X.
  • 19.Kohfahl, C., & Pekdeger, A. (2006). Rising groundwater tables in partly oxidized pyrite bearing dump-sediments: column study and modelling approach. Journal of Hydrology, 331(3e4), 703e718. http://dx.doi.org/10.1016/j.jhydrol.2006.06.011.
  • 20.Labus, K., & Skoczyńska, S. (2005). Wpływ reaktywnego dolomitu na odczyn wód odciekowych składowiska Smolnica [Influence of reactive dolomite on the reaction of leachates from the “Smolnica” coal mining waste pile]. Zeszyty Naukowe. Górnictwo/Politechnika Śla˛ska, 267, 147e154.
  • 21.Lan, Y., Huang, X., & Deng, B. (2002). Suppression of pyrite oxidation by iron 8-hydroxyquinoline. Archives of Environmental Contamination and Toxicology, 43(2), 168e174. http://dx.doi.org/10.1007/s00244-002-1178-3.
  • 22.Nordstrom, D. K., & Southam, G. (1997). Geomicrobiology of sulphide mineral oxidation. In J. F. Banfield, & K. H. Nealson (Eds.), Reviews in mineralogy 35Geomicrobiology: Interactions between microbes and minerals, geomicrobiology (pp. 361e390). Mineralogy Society of America.
  • 23.Pacholewska, M. (2007). Microbial oxidation of the mixed pyrite mill tailings. Archives of Environmental Protection, 33(2), 79e92.
  • 24.Parkhurst, D. L., & Appelo, C. A. J. (1999). User's guide to PHREEQC (version 2). A computer program for speciation, batch-reaction, onedimensional transport, and inverse geochemical calculations. U.S. Geological Survey Water-Resources Investigations Report (pp. 99e4259).
  • 25.Paulo, A. (2008). Przyrodnicze ograniczenia wyboru kierunku zagospodarowania terenów pogórniczych [Environmental constraints of managing post mining areas]. Gospodarka Surowcami Mineralnymi, 24(2/3), 9e40.
  • 26.Perez Lopez, R., Cama, J., Nieto, J. M., Ayora, C., & Saaltink, M. W. (2009). Attenuation of pyrite oxidation with a fly ash prebarrier: reactive transport modelling of column experiments. Applied Geochemistry, 24(9), 1712e1723. http://dx.doi.org/10.1016/j.apgeochem.2009.05.001.
  • 27.Pisapia, C., Chaussidon, M., Mustin, C., & Humbert, B. (2007). O and S isotopic composition of dissolved and attached oxidation products of pyrite by Acidithiobacillus ferrooxidans: comparison with abiotic oxidations. Geochimica et Cosmochimica Acta, 71(10), 2474e2490. http://dx.doi.org/10.1016/j.gca.2007.02.021.
  • 28.Postma, D. (1983). Pyrite and siderite oxidation in swamp sediments. Journal of Soil Science, 34(1), 163e182.
  • 29.Puura, E., Neretnieks, I., & Kirsim€ae, K. (1999). Atmospheric oxidation of the pyritic waste rock in Maardu, Estonia. 1 field study and modelling. Environmental Geology, 39(1), 1e19. http://dx.doi.org/10.1007/s002540050432.
  • 30.Sasaki, K., Tsunekawa, M., Ohtsuka, T., & Konno, H. (1998). The role of sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering. Colloids and Surfaces A, 133(3), 269e278. http://dx.doi.org/10.1016/S0927-7757(97)00200-8.
  • 31.Schoonen, M., Elsetinow, A., Borda, M., & Strongin, D. (2000). Effect of temperature and illumination on pyrite oxidation between pH 2 and 6. Geochemical Transactions, 4, 1e11.
  • 32.Singer, P. C., & Stumm, W. (1970). Acidic mine drainage: the ratedetermining step. Science, 167, 1121e1124.
  • 33.Skarzyńska, K. M. (1997). Odpady powęglowe i ich zastosowanie w inżynierii lądowej i wodnej [Post-mining waste and its use in civil engineering and hydraulic engineering]. Kraków: Wydawnictwo Uniwersytetu Rolniczego.
  • 34.Smith, E. E., & Shumate, K. S. (1970). Sulfide to sulphate reaction mechanism., program number FWPCA grand No 14010 FPS. Columbus, OH: Ohio State University Research Foundation.
  • 35.Stefaniak, S. (2006). Migracja zanieczyszczeń z warstwy odpadów górnictwa węglowego w środowisku wodno-gruntowym w różnych warunkach deponowania [Migration of pollutants from a layer of mining waste in water and soil environment in various storage conditions] (Praca doktorska). Katowice: GIG (Doctoral thesis).
  • 36.Thomas, P.S.,Hirschausen, D.,White,R.E.,Guerbois, J. P.,&Ray,A.S. (2003). Characterisation of the oxidation products of pyrite by thermogravimetric and evolved gas analysis. Journal of Thermal Analysis and Calorimetry, 72(3), 769e776. http://dx.doi.org/10.1023/A:1025001811801.
  • 37.Todd, E. C., Sherman, D. M., & Purton, J. A. (2003). Surface oxidation of pyrite under ambient atmospheric and aqueous (pH 2 to 10) conditions: electronic structure and mineralogy from X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta, 67(5), 881e893. http://dx.doi.org/10.1016/S0016.
  • 38.Twardowska, I. (1981). Mechanizm i dynamika ługowania odpadów karbońskich na zwałowiskach [Mechanism and dynamics of leaching carboniferous waste in dumping sites]. In Prace i studia, 25. Zabrze: Wydawnictwo Polskiej Akademii Nauk.
  • 39.Twardowska, I., Szczepańska, J., & Witczak, S. (1988). Wpływ odpadów górnictwa węgla kamiennego na środowisko wodne. Ocena zagrożenia, prognozowanie, zapobieganie [Influence of hard coal mining waste on water environment. Risk assessment, forecast, prevention]. Zabrze: Wydawnictwo Polskiej Akademii Nauk.
  • 40.Van Breemen, N. (1973). Soil forming processes in acid sulphate soils. In H. Dost (Ed.), Acid sulphate soils: Proceedings of the international symposium on acid sulphate soils: II. Research papers (pp. 66e128). Wageningen: International Institute for Land Reclamation and Improvement.
  • 41.Vardanyan, N. S., & Akopyan, V. P. (2003). Leptospirillum-like bacteria and evaluation of their role in pyrite oxidation. Microbiology, 72, 438e442.
  • 42.Wang, H., Bigham, J. M., & Tuovinen, O. H. (2007). Oxidation of marcasite and pyrite by iron-oxidizing bacteria and archaea. Hydrometallurgy, 88(1e4), 127e131. http://dx.doi.org/10.1016/j.hydromet.2007.03.010.7037(02)00957-2.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b3298e34-f1c8-40d3-84a7-829942a686f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.