PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimal design of Wire-and-Arc Additively Manufactured I-beams for prescribed deflection

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Alloys fabricated by wire-and-arc additive manufacturing (WAAM) exhibit a peculiar anisotropy in their elastic response. As shown by recent numerical investigations concerning the optimal design of WAAM-produced structural components, the printing direction remarkably affects the stiffness of the optimal layouts, as well as their shape. So far, single-plate specimens have been investigated. In this contribution, the optimal design of WAAM-produced I-beams is addressed assuming that a web plate and two flat flanges are printed and subsequently welded to assemble the structural component. A formulation of displacement-constrained topology optimization is implemented to design minimum weight specimens resorting to a simplified two-dimensional model of the I-beam. Comparisons are provided addressing solutions achieved by performing topology optimization with (i) conventional isotropic stainless steel and with (ii) WAAM-produced orthotropic stainless steel at prescribed printing orientations. Lightweight solutions arise whose specific shape depends on the selected material and the adopted printing direction.
Rocznik
Strony
357--378
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • Department of Civil and Environmental Engineering, Politecnico di Milano, 20133,Milano, Italy
  • Department of Civil, Chemical, Environmental and Materials Engineering,University of Bologna, 40136, Bologna, Italy
  • Department of Civil, Chemical, Environmental and Materials Engineering,University of Bologna, 40136, Bologna, Italy
Bibliografia
  • 1. M. Carpo, The digital turn in architecture 1992–2012 , John Wiley and Sons, 2013, doi: 10.1002/9781118795811.
  • 2. S. Adriaenssens, P. Block, D. Veenendaal, C. Williams, Shell structures for architecture: form finding and optimization , Routledge, 2014, doi: 10.4324/9781315849270.
  • 3. T. Lewiński, T. Sokół, C. Graczykowski, Michell Structures , Springer 2018, doi: 10.1007/978-3-319-95180-5.
  • 4. M. Bruggi, A constrained force density method for the funicular analysis and design of arches, domes and vaults, International Journal of Solids and Structures , 193–194 : 251–269, 2020, doi: 10.1016/j.ijsolstr.2020.02.030.
  • 5. C. Boje, A. Guerriero, S. Kubicki, Y. Rezgui, Towards a semantic Construction Digital Twin: Directions for future research, Automation in Construction , 114 : 103179, 2020, doi: 10.1016/j.autcon.2020.103179.
  • 6. W.E. Frazier, Metal additive manufacturing: A review, Journal of Materials Engineering and Performance , 23 : 1917–1928, 2014, doi: 10.1007/s11665-014-0958-z.
  • 7. B. Wu et al. , A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement, Journal of Manufacturing Processes , 35 : 127–139, 2018, doi: 10.1016/j.jmapro.2018.08.001.
  • 8. C. Buchanan, L. Gardner, Metal 3D printing in construction: A review of methods, research, applications, opportunities and challenges, Engineering Structures , 180 : 332–348, 2019, doi: 10.1016/j.engstruct.2018.11.045.
  • 9. M. Dinovitzer, X. Chen, J. Laliberte, X. Huang, H. Frei, Effect of wire and arc additive manufacturing (WAAM) process parameters on bead geometry and microstructure, Additive Manufacturing , 26 : 138–146, 2019, doi: 10.1016/j.addma.2018.12.013.
  • 10. L. Ji, J. Lu, C. Liu, C. Jing, H. Fan, S. Ma, Microstructure and mechanical properties of 304L steel fabricated by arc additive manufacturing, MATEC Web of Conferences, 2017, doi: 10.1051/matecconf/201712803006.
  • 11. V. Laghi, M. Palermo, G. Gasparini, V.A. Girelli, T. Trombetti, Experimental results for structural design of Wire-and-Arc Additive Manufactured stainless steel members, Journal of Constructional Steel Research , 167 : 105858, 2020, doi: 10.1016/j.jcsr.2019.105858.
  • 12. V. Laghi, M. Palermo, L. Tonelli, G. Gasparini, L. Ceschini, T. Trombetti, Tensile properties and microstructural features of 304L austenitic stainless steel produced by wire-and-arc additive manufacturing, International Journal of Advanced Manufacturing Technology , 106 (9–10): 3693–3705, 2020, doi: 10.1007/s00170-019-04868-8.
  • 13. V. Laghi, M. Palermo, G. Gasparini, V.A. Girelli, T. Trombetti, On the influence of the geometrical irregularities in the mechanical response of wire-and-arc additively manufactured planar elements, Journal of Constructional Steel Research , 178 : 106490, 2021, doi: 10.1016/j.jcsr.2020.106490.
  • 14. P. Kyvelou et al ., Mechanical and microstructural testing of wire and arc additively manufactured sheet material, Materials and Design , 192 : 108675, 2020, doi: 10.1016/j.matdes.2020.108675.
  • 15. V. Laghi et al. , Experimentally-validated orthotropic elastic model for wire-and-arc ad-ditively manufactured stainless steel, Additive Manufacturing , 42 : 101999, 2021, doi: 10.1016/j.addma.2021.101999.
  • 16. N. Hadjipantelis, B. Weber, C. Buchanan, L. Gardner, Description of anisotropic material response of wire and arc additively manufactured thin-walled stainless steel elements, Thin-Walled Structures , 171 : 108634, 2022, doi: 10.1016/j.tws.2021.108634.
  • 17. W. Zhang, J. Zhu, T. Gao, Topology Optimization in Engineering Structure Design , Elsevier, 2016.
  • 18. M.P. Bendsoe, O. Sigmund, Topology Optimization: Theory, Methods and Applications , Springer, 2003.
  • 19. O. Sigmund, K. Maute, Topology optimization approaches: A comparative review, Structural and Multidisciplinary Optimization , 48 (6): 1031–1055, 2013, doi: 10.1007/s00158-013-0978-6.
  • 20. J. Liu et al ., Current and future trends in topology optimization for additive manufacturing, Structural and Multidisciplinary Optimization , 57 (6): 2457–2483, 2018, doi: 10.1007/s00158-018-1994-3.
  • 21. L. Meng et al ., From topology optimization design to additive manufacturing: Today’s success and tomorrow’s roadmap, Archives of Computational Methods in Engineering , 27 (2020): 805–830, 2019, doi: 10.1007/s11831-019-09331-1.
  • 22. G. Allaire, B. Bogosel, Optimizing supports for additive manufacturing, Structural and Multidisciplinary Optimization , 58 (6): 2493–2515, 2018, doi: 10.1007/s00158-018-2125-x.
  • 23. M. Bruggi, N. Parolini, F. Regazzoni, M. Verani, Topology optimization with a time-integral cost functional, Finite Elements in Analysis and Design , 140 : 11–22, 2018, doi: 10.1016/j.finel.2017.10.011.
  • 24. G. Allaire, C. Dapogny, R. Estevez, A. Faure, G. Michailidis, Structural optimization under overhang constraints imposed by additive manufacturing technologies, Journal of Computational Physics , 351 : 295–328, 2017, doi: 10.1016/j.jcp.2017.09.041.
  • 25. O. Amir, Y. Mass, Topology optimization for staged construction, Structural and Multidisciplinary Optimization , 57 (4): 1679–1694, 2018, doi: 10.1007/s00158-017-1837-7.
  • 26. X. Guo, J. Zhou, W. Zhang, Z. Du, C. Liu, Y. Liu, Self-supporting structure design in additive manufacturing through explicit topology optimization, Computer Methods in Applied Mechanics and Engineering , 323 : 27–63, 2017, doi: /10.1016/j.cma.2017.05.003.
  • 27. M. Langelaar, Combined optimization of part topology, support structure layout and build orientation for additive manufacturing, Structural and Multidisciplinary Optimization , 57 (5): 1985–2004, 2018, doi: 10.1007/s00158-017-1877-z.
  • 28. W. Wang, D. Munro, C.C.L. Wang, F. van Keulen, J. Wu, Space-time topology optimization for additive manufacturing: Concurrent optimization of structural layout and fabrication sequence, Structural and Multidisciplinary Optimization , 61 : 1–18, 2020, doi: 10.1007/s00158-019-02420-6.
  • 29. M. Bruggi, V. Laghi, T. Trombetti, Simultaneous design of the topology and the build orientation of Wire-and-Arc Additively Manufactured structural elements, Computers and Structures , 242 : 106370, 2021, doi: 10.1016/j.compstruc.2020.106370.
  • 30. L.L. Stromberg, A. Beghini, W.F. Baker, G.H. Paulino, Topology optimization for braced frames: Combining continuum and beam/column elements, Engineering Structures , 37 : 106–124, 2012, doi: 10.1016/j.engstruct.2011.12.034.
  • 31. K. Svanberg, Method of moving asymptotes – A new method for structural optimization, International Journal for Numerical Methods in Engineering , 24 (2): 359–373, 1987, doi: 10.1002/nme.1620240207.
  • 32. S.W. Williams, F. Martina, A.C. Addison, J. Ding, G. Pardal, P. Colegrove, Wire Arc additive manufacturing, Materials Science and Technology , 32 (7): 641–647, 2016, doi: 10.1179/1743284715Y.0000000073.
  • 33. V. Laghi et al ., Mechanical response of dot-by-dot wire-and-arc additively manufactured 304L stainless steel bars under tensile loading, Construction and Building Materials , 318 : 125925, 2022, doi: 10.1016/j.conbuildmat.2021.125925.
  • 34. M.M. Mehrabadi, S.C. Cowin, Eigentensors of linear anisotropic elastic materials, Quarterly Journal of Mechanics and Applied Mathematics , 43 : 15–41, 1990, doi: 10.1093/qjmam/43.1.15.
  • 35. P. Vannucci, Anisotropic elasticity, [in:] Lecture Notes in Applied and Computational Mechanics book series , Vol. 85, Springer International Publishing, 2018, doi: 10.1007/978-981-10-5439-6.
  • 36. European Committee for Standardization CEN (2015) EN 1993-1-4:2006 + a1:2015 Eurocode 3 Design of Steel Structures, Part 1–4: General Rules Supplementary Rules for Stainless Steel.
  • 37. M. Bruggi, A. Taliercio, Optimal strengthening of concrete plates with unidirectional fiber-reinforcing layers, International Journal of Solids and Structures , 67–68 : 311–325, 2015, doi: 10.1016/j.ijsolstr.2015.04.033.
  • 38. D. Briccola, M. Bruggi, Analysis of 3D linear elastic masonry-like structures through the API of a finite element software, Advances in Engineering Software , 2019, 133 : 60–75, doi: 10.1016/j.advengsoft.2019.04.009.
  • 39. M. Bruggi, A. Taliercio, Hierarchical infills for additive manufacturing through a multiscale approach, Journal of Optimization Theory and Applications , 187 (3): 654–682, 2020, doi: 10.1007/s10957-020-01685-y.
  • 40. F. Ferrari, O. Sigmund, A new generation 99 line Matlab code for compliance topology optimization and its extension to 3D, Structural and Multidisciplinary Optimization , 62 (4): 2211–2228, 2020, doi: 10.1007/s00158-020-02629-w.
  • 41. T. Borrvall, J. Petersson, Topology optimization using regularized intermediate density control, Computer Methods in Applied Mechanics and Engineering , 190 (37–38): 4911– 4928, 2001, doi: 10.1016/S0045-7825(00)00356-X.
  • 42. B. Bourdin, Filters in topology optimization, International Journal for Numerical Methods in Engineering , 50 (9): 2143–2158, 2001, doi: 10.1002/nme.116.
  • 43. F. Wang, B. Lazarov, O. Sigmund, On projection methods, convergence and robust formulations in topology optimization, Structural and Multidisciplinary Optimization , 43 (6): 767–784, 2011, doi: 10.1007/s00158-010-0602-y.
  • 44. B. Blachowski, P. Tauzowski, J. Logo, Yield limited optimal topology design of elastoplastic structures, Structural and Multidisciplinary Optimization , 61 (5): 1953–1976, 2020, doi: 10.1007/s00158-019-02447-9.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b3254515-0bcb-43f1-8a44-eb44f3c778d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.