PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical study of residual thermal stresses in MMC

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, numerical study analysis of residual thermal stresses in aluminum matrix reinforced with silicon carbide particles with double-crack has been carried out. is studied in order to determine the thermo-mechanical behavior under the effect of different temperature gradients during cooling. For a more realistic simulation of the microstructure of these materials subjected to different loadings, a representative volume element may be used. In this paper, three different types of crack width a = 5 μm, 10 μm, 15 μm, has been carried. The thermal residual stresses are calculated by considering a wide range of cracks of different penetrations proximity to particle of 0.1, 0.2 and 0.5 μm. regarding the distribution of the stresses along the plane of the crack and in vicinity of the particle, results show that the penetration of the crack in the matrix causes an asymmetry. The inter-distance between crack and particle plays an important role regarding the generation of residual stresses. The lower the inter-distance, the higher the internal stresses of normal residual stresses of σzz.
Rocznik
Strony
1099--1109
Opis fizyczny
Bibliogr. 18 poz., il. kolor., wykr.
Twórcy
autor
  • Institute of Sciences and Technology, University Center Bejhadj Bouchaib, Ain Temouchent 46000, Algeria
Bibliografia
  • [1] ABAQUS: User’s Manual, 6.11, Dassault Syst`emes Simulia Corp, 2011.
  • [2] Aboudi, J.: Micromechanical analysis of composites by the method of cells, Appl. Mech. Rev., 42, 193-221, 1989. .
  • [3] Ayyar, A., Chawla, N.: Microstructure-based modeling of the influence of particle spatial distribution and fracture on crack growth in particle-reinforced composites, Acta Mater, 55, 18, 6064-73, 2007.
  • [4] Ayyar, A., Crawford, G. A., Williams, J. J., Chawla, N.: Numerical simulation of the effect of particle spatial distribution and strength on tensile behavior of particle reinforced composites. Comput Mater Sci, 44, 2, 496-506, 2008.
  • [5] Bouafia, F.: Serier, B., Bachir Bouiadjra, B.: Finite element analysis of the thermal residual stresses of SiC particle reinforced aluminum composite, Computational Materials Science, 54, 195-203, 2012.
  • [6] Hill, R., Mech, J.: Phys. Solids Elastic Properties of Reinforced Solids: Some Theoretical Principles. Journal of the Mechanics and Physics of Solids, Scientific Research, 11, 357-372, 1963.
  • [7] Kenesei, P., Borbély, A., Biermann, H.: Microstructure based threedimensional finite element modeling of particulate reinforced metal- matrix composites, Materials Science and Engineering A, 387- 389, 852-856, 2004.
  • [8] Akm A. I., Yoshio, A.: Investigation of the fatigue crack propagation behaviour in the Al alloy/Hybrid MMC Bilayer material, Materials Science and Engineering, 244, 012013, 2017.
  • [9] Legrain, G., Moes, N., Verron, E.: Stress analysis around crack tips in finite strain problems using the extended Finite Element Method, International Journal for Numerical Methods in Engineering, 63 (??), 290-314, 2005.
  • [10] Llorca, J., Gonzalez, C.: Microstructural factors controlling the strength and ductility of particle reinforced metal-matrix composites, Journal of the Mechanics and Physics of Solids, 46, 1, 1-28, 1998.
  • [11] Wenzhi Wang, Yonghui Dai, Chao Zhang, Xiaosheng Gao, Meiying Zhao: Micromechanical Modeling of Fiber-Reinforced Composites with Statistically Equivalent Random Fiber Distribution, Materials (B), 9, 8, 624, 2016.
  • [12] Manoharan, M., Gupta, M.: Composites: Part B, Engineering, 30, 1, 107-112, 1999.
  • [13] Meijer, G., Ellyin, F., and Xia, Z.: Aspects of residual thermal stress/strain in particle reinforced metal matrix composites, Composites: Part B, Engineering, 31, 1, 29-37, 2000.
  • [14] Mukherjee, S., Ananth, C. R., Chandra, N.: Effect of residual stresses on the interfacial fracture behavior of metal-matrix composites, Composites Science and Technology, 57, 1501-1512, 1999.
  • [15] Nehari, T., Ziadi, A., Ouinas, D.: Numerical Study of the Effect of the Penetration of a Crack in the Matrix of a Composite, Engineering, Technology & Applied Science Research, 4, 3, 649-655, 2014.
  • [16] Surry, M., Teodosiu, C., and Menezes, L. F.: Thermal residual stresses in particle-reinforced /viscoplastic metal matrix composites, Materials Science and Engineering, A, 167, 1-2, 97-105, 1993.
  • [17] Trias, D., Costa, J., Turon, A., Hurtado, J. E.: Determination of the critical size of a statistical representative volume element (SRVE) for carbon reinforced polymers, Acta Materialia, 54, 3471-3484, 2006.
  • [18] Ye, C., Shi, J., Cheng, G. J.: An eXtended Finite Element Method (XFEM) study on the effect of reinforcing particles on the crack propagation behavior in a metal-matrix composite, International Journal of Fatigue, 44, 151-156, 2012.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b323e646-fd0b-4580-93fa-7913478c817d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.