PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of the binding mechanism of cobalt(II) meso-tetraphenyl porphyrin with plant-esterase

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Plant-esterase (EC 3.1.1.X) has received much attention because plant esterase and acetylcholinesterase (AChE) share a similar sensitivity towards organophosphorus (OP) pesticides detection with the same inhibition mechanism. To improve the analytical performance, tetraphenyl metal porphyrin, as an indicator was introduced to combine with plant-esterase. The time of reach equilibrium in PBS solution was shortened after adding plant-esterase by assaying the intensify change of the porphyrin spectrum. Meanwhile, intensify of porphyrin spectrum with plant-esterase was increased compared with that of only the porphyrin spectrum in solution. Tetraphenyl metal porphyrin, such as cobalt(II) meso-tetraphenyl porphyrin, is a mixed reversible inhibitor of plant-esterase from kinetic parameters. The combination ratio of plant-esterase and porphyrin is 2:1. On the other hand, the interaction between CoTPPCl and plant-esterase is the strongest among all tested tetraphenyl metal porphyrin. And the mixed system (CoTPPCl-plant-esterase) showed the best sensitivity towards the tested pesticide. All these results indicated that a complex system composed of tetraphenyl metal porphyrin and plant-esterase was fit for detecting pesticides. They make meaningful guidance on the further design of sensing material in monitoring pesticides.
Rocznik
Strony
25--30
Opis fizyczny
Bibliogr. 12 poz., rys., tab.
Twórcy
autor
  • Sichuan University of Science & Engineering Zigong, China
  • Key Laboratory of Biorheology Science and Technology Ministry of Education, College of Bioengineering, Chongqing University Chongqing, China
autor
  • Sichuan University of Science & Engineering Zigong, China
autor
  • Sichuan University of Science & Engineering Zigong, China
autor
  • Key Laboratory of Biorheology Science and Technology Ministry of Education, College of Bioengineering, Chongqing University Chongqing, China
autor
  • Key Laboratory of Biorheology Science and Technology Ministry of Education, College of Bioengineering, Chongqing University Chongqing, China
autor
  • Key Laboratory of Biorheology Science and Technology Ministry of Education, College of Bioengineering, Chongqing University Chongqing, China
Bibliografia
  • 1 . Wang, M., Gu, X., Zhang, G., Zhang, D. & Zhu, D. (2009). Continuous Colorimetric Assay for Acetylcholinesterase and Inhibitor Screening with Gold Nanoparticles. Langmuir., 25, 2504–2507. DOI: 10.1021/la803870v.
  • 2. Kulikova, O.M., Ivanova, Y.B. & Mamardashvili NZ. (2011). Determination of acidity of di-, tri-, and tetraazaporphyrins in dimethyl sulfoxide-potassium cryptate medium. Russ. J. Gen. Chem. 81, 602–606. DOI: 10.1134/S1070363211030285.
  • 3. Roales, J., Pedrosa, J.M., Castillero, P., Cano, M. & Richardson, T.H. (2011). Optimization of mixed Langmuir--Blodgett films of a water insoluble porphyrin in a calixarene matrix for optical gas sensing. Thin Solid Films. 519, 2025–2030. DOI: 10.1016/j.tsf.2010.10.038.
  • 4. Whittington, C.L., Maza, W.A., Woodcock, H.L. & Larsen, R.W. (2012). Understanding Ion Sensing in Zn(II) Porphyrins: Spectroscopic and Computational Studies of Nitrite/Nitrate Binding. Inorg. Chem. 51, 4756–4762. DOI: 10.1021/ic300039v.
  • 5. Harmon, H.J. (2008). Role of non-linear optics and multiple photon absorbance in enhancing sensitivity of enzyme-based chemical agent detectors. Methods., 46, 18–24. DOI: 10.1016/j. ymeth.2008.05.003.
  • 6. Huo, D.Q., Yang, L.M. & Hou, C.J. (2009). Optical Detection of Dimethyl Methyl-Phosphonate with Monosulfonate Tetraphenyl Porphyrin-Plant-Esterase Complex. Sensor Lett., 7, 72–78. DOI: 10.1166/sl.2009.1012.
  • 7. Komatsu, T., Wang, R.M., Zunszain, P.A., Curry, S. & Tsuchida, E. (2006). Photosensitized reduction of water to hydrogen using human serum albumin complexed with zinc--protoporphyrin IX. J. Amer. Chem. Soc., 128, 16297–16301. DOI: 10.1021/ja0656806.
  • 8. Hou, C.J., He, K., Yang, L.M., Huo, D.Q., Yang, M., Huang, S., Zhang, L. & Shen, C.H. (2012). Catalytic characteristics of plant-esterase from wheat flour. World J. Microbiol. Biotechnol., 28, 541–548. DOI: 10.1007/s11274-011-0845-9.
  • 9.Yang, L.M, Huo, D.Q., Hou, C.J., He, K., Lv, F.J., Fa, H.B. & Luo, X.G. (2010). Purification of plant-esterase in PEG1000/NaH2PO4 aqueous two-phase system by a two-step extraction. Proc. Biochem., 45, 1664–1671. DOI: 10.1016/j. procbio.2010.06.018.
  • 10. Vanasperen, K. (1962). A Study Of Housefly Esterases by Means Of a Sensitive Colorimetric Method. J. Insect Physiology., 8, 401. DOI: 10.1016/0022-1910(62)90074-4.
  • 11. Fernandez, N.F., Sansone, S., Mazzini, A. & Brancaleon, L. (2008). Irradiation of the porphyrin causes unfolding of the protein in the protoporphyrin IX/beta-lactoglobulin noncovalent complex. J. Phys. Chem. B. 112, 7592–7600. DOI: 10.1021/jp710249d.
  • 12. Kapp, E.A., Daya, S. & Whiteley, C.G. (1990). Protein--Ligand Interactions – Interaction Of Nitrosamines with Nicotinic Acetylcholine-Receptor. Biochem. Biophys. Res. Commun., 1(67), 1383–1392. DOI: 10.1016/0006-291x(90)90676-E.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b315e2a1-bd9c-4f8a-afa1-c9a958a9abff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.