Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The recent trends in the automotive industry have enforced chassis solutions beyond the reach of conventional systems. Thus, extending the functionality of passive hydraulic dampers is vital in improving their effectiveness while maintaining low production and operating costs. This paper presents a general structure of a passive shock absorber with so-called frequency-dependent (FD) damping characteristics and points to constitutive elements of the valves used in this type of an adaptive damper. A mathematical description of FD damper is provided together with a model developed in the Siemens AMESim environment. The performance of the model was verified against the data from tests with a real, commercially available FD shock absorber. Furthermore, in order to emphasise its efficiency, the authors have carried out a study involving quarter car models (QCM) with and without the FD damper, respectively. The results have clearly shown major advantages of utilising FD dampers in a suspension.
Czasopismo
Rocznik
Tom
Strony
409--418
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Mechanical Engineering, Cracow University of Technology, al. Jana Pawła II 37, 31-864 Kraków, Poland
autor
- Faculty of Electrical and Computer Engineering, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
Bibliografia
- 1. Neal MW, Cwycyshyn W, Badiru I. Tuning Dampers for Ride and Handling of Production Vehicles. SAE International. 2015;8(1):152–9.
- 2. Badiru I, Cwycyshyn WB. Customer focus in ride development. SAE International. 2013;2013(1):1355.
- 3. Rajmani R. Vehicle Dynamics and Control, 2nd ed. Springer New York Dordrecht Heidelberg London. 2012.
- 4. Sekulić D, Dedović V. The Effect of Stiffness and Damping of the Suspension System Elements on the Optimisation of the Vibrational Behaviour of a Bus. International Journal for Traffic and Transport Engineering. 2011;1:231–44.
- 5. Solmaz S, Afatsun AC, Başlamışlı SÇ. Parametric analysis and compensation of ride comfort for electric drivetrains utilizing in-wheel electric motors. International Journal of Simulation: Systems, Science and Technology. 2016;17(33).
- 6. Nguyen LH, Hong KS, Park S. Road-frequency adaptive control for semi-active suspension systems. Int J Control Autom Syst. 2010;8(5):1029–38.
- 7. Slaski G. Simulation and experimental testing of adaptive suspension damping control depending on the frequency of a sinusoidal kinemat-ic input. The Archives of Automotive Engineering. 2014;2(64): 165–78.
- 8. Pletschen N, Spirk S, Lohmann B. Frequency-selective adaptive control of a hybrid suspension system. IFAC Proceedings Volumes. 2013;46(21):237–42.
- 9. Zhang Y, Guo K, Li SE, Shao X, Zheng M. Prototyping design and experimental validation of membranous dual-cavity based amplitude selective damper. Mech Syst Signal Process. 2016;76–77:810–22.
- 10. Franczyk B, Maniowski M, Gołdasz J. Frequency-dependent automo-tive suspension damping systems: State of the art review. Proceed-ings of the Institution of Mechanical Engineers, Part D: Journal of Au-tomobile Engineering [Internet]. 2023;0(0). Available from: https://doi.org/10.1177/09544070231174280
- 11. Lee CT, Moon BY. Simulation and experimental validation of vehicle dynamic characteristics for displacement-sensitive shock absorber using fluid-flow modelling. Mech Syst Signal Process. 2006;20(2):373–88.
- 12. Hazaveh NK, Rodgers GW, Chase JG, Pampanin S. Experimental Test and Validation of a Direction- and Displacement-Dependent Viscous Damper. J Eng Mech. 2017;143(11).
- 13. IIbeigi S, Jahanpour J, Farshidianfar A. A novel scheme for nonlinear displacement-dependent dampers. Nonlinear Dyn. 2012;70(1): 421–34.
- 14. Łuczko J, Ferdek U. Nonlinear dynamics of a vehicle with a dis-placement-sensitive mono-tube shock absorber. Nonlinear Dyn. 2020 Mar 1;100(1):185–202.
- 15. Łuczko J, Ferdek U, Łatas W. Nonlinear analysis of shock absorbers with amplitude-dependent damping. AIP Conf Proc. 2018;1922(1):100011.
- 16. Goldasz J. Modelling of amplitude-selective-damping valves. Me-chanics and Control. 2011;30(2):60–4.
- 17. Nie S, Zhuang Y, Wang Y, Guo K. Velocity & displacement-depen-dent damper: A novel passive shock absorber inspired by the semi-active control. Mech Syst Signal Process. 2018 Jan 15;99:730–46.
- 18. Xu T, Liang M, Li C, Yang S. Design and analysis of a shock absorb-er with variable moment of inertia for passive vehicle suspensions. J Sound Vib. 2015 Oct 27;355:66–85.
- 19. Sikora M. Modeling and Operational Analysis of an Automotive Shock Absorber with a Tuned Mass Damper. Acta Mechanica et Au-tomatica. 2018;12(3).
- 20. De Kock P, De Ruiter AAW. Shock absorber with frequency-dependent damping. WO 03/040586 A1 (Patent), 2003.
- 21. Nowaczyk M, Van de Plas J, Vochten J. Shock Absorber With Fre-quency Dependent Passive Valve. United States; US9638280B2, 2017.
- 22. Dixon JC. The Shock Absorber Handbook. 2nd ed.. John Wiley & Sons, Ltd; 2007.
- 23. Sikora M. Study of Flow-Induced Vibration Phenomena in Automotive Shock Absorbers. Mechanics and Control. 2014;33(2).
- 24. Skačkauskas P, Žuraulis V, Vadluga V, Nagurnas S. Development and verification of a shock absorber and its shim valve model based on the force method principles. Eksploatacja i Niezawodność - Maintenance and Reliability. 2017;19(1):126–33.
- 25. Xu J, Chu J, Ma H. Hybrid modeling and verification of disk-stacked shock absorber valve. Advances in Mechanical Engineering. 2018;10(2).
- 26. Czop P, Sławik D, Śliwa P, Wszołek G. Simplified and advanced models of a valve system used in shock absorbers Analysis and modelling. Journal of Achievements in Materials and Manufacturing Engineering. 2009;33(2).
- 27. Farjoud A, Ahmadian M. Shim stack deflection analysis in hydraulic dampers using energy methods. In: Active and Passive Smart Struc-tures and Integrated Systems 2010. 2010.
- 28. Siemens Industry Software NV. Simcenter Amesim. Siemens; 2018.
- 29. Mahmood M, Nassar A, Mohammad H. Analysis and Study Indica-tors for Quarter Car Model with Two Air Suspension System. Basrah journal for engineering science. 2022;22(2).
- 30. Agostinacchio M, Ciampa D, Olita S. The vibrations induced by surface irregularities in road pavements - a Matlab® approach. Euro-pean Transport Research Review. 2014;6(3).
- 31. Wang P. Effect of electric battery mass distribution on electric vehicle movement safety. In: Vibroengineering Procedia. 2020.
- 32. Huang S, Nguyen V. Influence of dynamic parameters of electric-vehicles on the ride comfort under different operation conditions. Journal of Mechanical Engineering, Automation and Control Sys-tems. 2021;2(1).
- 33. Sharma SK, Kumar A. Ride comfort of a higher speed rail vehicle using a magnetorheological suspension system. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics. 2018;232(1):32-48.
- 34. Deubel C, Ernst S, Prokop G. Objective evaluation methods of vehicle ride comfort — A literature review. Journal of Sound and Vi-bration. 2023; 548:117515.
- 35. Burkhard G, Berger T, Enders E, Schramm D. An extended model of the ISO-2631 standard to objectify the ride comfort in autonomous driving. Work. 2021; 68(s1):37-45.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b314c17c-5605-4c9d-8bcc-0e577b8ca6f0