Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Geopolymer is synthesized by polycondensation of SiO4 and AlO4 aluminosilicate complexes, tetrahedral frames linked with shared sialate oxygen. This paper studies the effect of the solids-to-fluids (S/L) and Na2SiO3/NaOH proportions on the preparing of metakaolin inorganic membrane geopolymer. By consolidating a mixture of metakaolin with sodium hydroxide, sodium silicate and foaming agent, the geopolymer membrane was made in required shape about 1 cm and cured at 80°C for 24 hours. After the curing process, the properties of the samples were tested on days 7. Sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) solution were utilized as an alkaline activator with a NaOH fixation fixed at 10 M. The geopolymer inorganic membrane tests were set up with various S/L proportions (0.8, 1.0, 1.2 and 1.4) and Na2SiO3/NaOH proportions (0.5, 1.0, 1.5, 2.0 and 2.5). Aluminium (Al) powder as a foaming agent was used to create bubbles in porous structure and provide details on the development of membrane geopolymers. This metakaolin membrane, based on the geopolymer, was synthesized by a suspension that depends on the fast cementing mechanism of high-temperature slurries. Porous geopolymeric circles provided a homogeneous composition and quantitative distribution of pores. The water absorption, density, impact toughness testing and microstructure analyses were studied. However, considering the promising results, an adjustment in the mix design of the metakaolin inorganic membrane geopolymer mixtures could increase their mechanical properties without negatively affecting the mechanical properties and porosity, making these sustainable materials a suitable alternative to traditional porous cement concrete.
Wydawca
Czasopismo
Rocznik
Tom
Strony
695--702
Opis fizyczny
Bibliogr. 40 poz., fot., rys., tab., wykr.
Twórcy
autor
- Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, 02100, Padang Besar, Perlis, Malaysia
- Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolymer & Green Technology (CeGeoGTech), 02600, Arau, Perlis, Malaysia
autor
- Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolymer & Green Technology (CeGeoGTech), 02600, Arau, Perlis, Malaysia
- Universiti Malaysia Perlis (UniMAP), Faculty of Mechanical Engineering Technology, 02600, Arau, Perlis, Malaysia
- Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, 02100, Padang Besar, Perlis, Malaysia
- Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolymer & Green Technology (CeGeoGTech), 02600, Arau, Perlis, Malaysia
autor
- Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, 02100, Padang Besar, Perlis, Malaysia
- Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolymer & Green Technology (CeGeoGTech), 02600, Arau, Perlis, Malaysia
autor
- Gheorghe Asachi Technical University of Iasi, Faculty of Materials Science and Engineering, 700050, Iasi, Romania
Bibliografia
- [1] W.M.W. Ibrahim, R. Ahmad, B.T. Coman, M.M.A.B. Abdullah, A. Puskas, V.S. Jaganathan, The Effects of Solid to Liquid Ratio on Fly Ash Based Lightweight Geopolymer, IOP Conf. Ser. Mater. Sci. Eng. 877 (1), (2020).
- [2] N.H. Jamil, M.M.A.B. Abdullah, F. Che Pa, M. Hasmaliza, W.M.A. Ibrahim, I.H.A. Aziz, B. Jeż, M. Nabiałek, Phase Transformation of Kaolin-ground granulated blast furnace slag from geopolymerization to sintering process, Magnetochemistry 7 (3), 1-13 (2021).
- [3] M.A. Faris, M.M.A.B. Abdullah, R. Muniandy, M.F. Abu Hashim, K. Błoch, B. Jeż, S. Garus, P. Palutkiewicz, N.A. Mohd Mortar, M.F. Ghazali, Comparison of hook and straight steel fibers addition on malaysian fly ash‐based geopolymer concrete on the slump, density, water absorption and mechanical properties, Materials (Basel) 14 (5), (2021).
- [4] N. Ariffin, M.M.A.B. Abdullah, P. Postawa, S.Z.A. Rahim, M.R.R.M.A. Zainol, R.P. Jaya, A. Śliwa, M.F. Omar, J.J. Wysłocki, K. Błoch, M. Nabiałek, Effect of aluminium powder on kaolin-based geopolymer characteristic and removal of Cu2+, Materials (Basel) 14 (4), 1-19 (2021).
- [5] W.W.A. Zailani, M.M.A.B. Abdullah, M.F. Arshad, R.A. Razak, M.F.M. Tahir, R.R.M.A. Zainol, M. Nabialek, A.V. Sandu, J.J. Wysłocki, K. Błoch, Characterisation at the bonding zone between fly ash based geopolymer repair materials (Grm) and ordinary portland cement concrete (opcc), Materials (Basel) 14 (1), 1-14 (2021).
- [6] O.H. Li, L. Yun-Ming, H. Cheng-Yong, R. Bayuaji, M.M.A.B. Abdullah, F.K. Loong, T.A. Jin, N.H. Teng, M. Nabiałek, B. Jeż, N.Y. Sing, Evaluation of the effect of silica fume on amorphous fly ash geopolymers exposed to elevated temperature, Magnetochemistry 7 (1), 1-14 (2021).
- [7] J. Davidovits, Geopolymer chemistry and applications. 5-th edition, J. Davidovits. - Saint-Quentin, France (Issue January 2008), (2020).
- [8] A.S. Sauffi, W. Mastura, W. Ibrahim, M. Mustafa, A. Bakri, Phase Analysis of Different Liquid Ratio on Metakaolin/Dolomite Geopolymer, Arch. Met. Mater. 67, 247-250 (2022).
- [9] I.H. Aziz, M.M.A.B. Abdullah, M.A. Anuar, S. Yoriya, R.A. Razak, The investigation of Ground Granulated Blast Furnace Slag Geopolymer at High Temperature by Using Electron Backscatter Diffraction Analysis, Arch. Met. Mater. 67, 227-231, (2022).
- [10] M. Krol, K. Brylewska, A. Knapik, K. Kornaus, W. Mozgawa, Conditions of synthesis and structure of metakaolin-based geopolymers: Application as heavy metal cation sorbent, Polish J. Chem. Technol. 19 (4), 103-109 (2017).
- [11] X. Yao, Z. Zhang, H. Zhu, Y, Chen, Geopolymerization Process of alkali-metakaolinite characterized by isothermal calorimetry, Thermochim. Acta. 493, 49-54 (2009).
- [12] C.Y. Heah, H. Kamarudin, A. M. Mustafa Al Bakri, M. Bnhussain, M. Luqman, I. Khairul Nizar, C.M. Ruzaidi, Y.M. Liew, Study on solids-to-liquid and alkaline activator ratios on kaolinbased geopolymers, Constr. Build. Mater. 35, 912-922 (2012).
- [13] S. Yaseri, G. Hajiaghaei, F. Mohammadi, M. Mahdikhani, R. Farokhzad. The role of synthesis parameters on the workability, setting and strength properties of binary binder based geopolymer paste, Constr. Build. Mater. 157, 534-545 (2017).
- [14] N. Ye, J. Yang, S. Liang, Y. Hu, J. Hu, B. Xiao, Q. Huang, Synthesis and strength optimization of one-part geopolymer based on red mud. Constr. Build. Mater. 111, 317-325 (2016).
- [15] M. Ul Rehman, K. Rashid, E. Ul Haq, M. Hussain, N. Shehzad, Physico-mechanical performance and durability of artificial lightweight aggregates synthesized by cementing and geopolymerization, Constr. Build. Mater. 232, 117290 (2020).
- [16] W.M.W. Ibrahim, K. Hussin, M.M.A. Abdullah, A.A. Kadir, L.M. Deraman, Effects of sodium hydroxide (NaOH) solution concentration on fly ash-based lightweight geopolymer, AIP Conf. Proc. 1885, (2017).
- [17] S. Onutai, T. Kobayashi, P. Thavorniti, S. Jiemsirilers, The adsorption of cadmium ions on fly ash based geopolymer particles, Key Eng. Mater. 766, 65-70 (2018).
- [18] M. Ibrahim, W.M.W. Ibrahim, M.M.A. Abdullah, A.S. Sauffi, A Review of Geopolymer Based Metakaolin Membrane as an Effective Adsorbent for Waste Water Treatment, IOP Conf. Ser. Mater. Sci. Eng. 864, (1) (2020).
- [19] H. Cheng, K. Lin, R. Cui, C. Hwang, T. Cheng, Y. Chang, Effect of solid-to-liquid ratios on the properties of waste catalyst - metakaolin based geopolymers, Constr. Build. Mater. 88, 74-83 (2015).
- [20] M.M. Al Bakri Abdullah, K. Hussin, M. Bnhussain, K.N. Ismail, Z. Yahya, R.A. Razak, Fly ash-based geopolymer lightweight concrete using foaming agent, Int. J. Mol. Sci. 13 (6), 7186-7198 (2012).
- [21] E. Kearsley, P. Wainwright, The effect of high fly ash content on the compressive strength of foamed concrete, Cement and Concrete Research 31 (1), 105-112 (2013).
- [22] M.S. Al-Harahsheh, K. Al Zboon, L. Al-Makhadmeh, M. Hararah, M. Mahasneh, Fly ash based geopolymer for heavy metal removal: a case study on copper removal, J. Environ. Chem. Eng. 3, (3), 1669-1677 (2015).
- [23] S. Petlitckaia, A. Poulesquen, Design of lightweight metakaolin based geopolymer foamed with hydrogen peroxide, Ceram. Int. 45 (1), 1322-1330 (2019)
- [24] N. Ain, L. Yun-Ming, H. Cheng-Yong, M.M.A. Abdullah, Correlation between pore structure, compressive strength and thermal conductivity of porous metakaolin geopolymer, Constr. Build. Mater. 247, 118641 (2020).
- [25] Y. Ge, X. Cui, Y. Kong, Z. Li, Y. He, Q. Zhou, Hazardous materials-Ge yuanyuan Porous geopolymeric spheres for removal of Cu (II) from aqueous solution: Synthesis and Evaluation, J. Hazard. Mater. 283, 244-251 (2016).
- [26] N.A. Jaya, L. Yun-Ming, M.M.A.B. Abdullah, H. Cheng-Yong, K. Hussin, Effect of Sodium Hydroxide Molarity on Physical, Mechanical and Thermal Conductivity of Metakaolin Geopolymers, IOP Conf. Ser. Mater. Sci. Eng. 343 (1), (2018).
- [27] N.A. Jaya, L. Yun-Ming, M. Mustafa, A. Bakri, Thermophysical Properties of Metakaolin Geopolymers Based on Na2SiO3/NaO ratio, Solid State Phenom. 280, 487-493 (2018).
- [28] Q. Tang, Y.Y. Ge, K.T. Wang, Y. He, X.M. Cui, Preparation of porous P-type zeolite spheres with suspension solidification method, Mater. Lett. 161, 558-560 (2015).
- [29] Q. Tang, Y. Ge, K. Wang, Y. He, X. Cui, Preparation and characterization of porous metakaolin-based inorganic polymer spheres as an adsorbent, JMADE 88, 1244-1249 (2015).
- [30] B.H. Mo, H. Zhu, X.M. Cui, Y. He, S.Y. Gong, Effect of curing temperature on geopolymerization of metakaolin-based geopolymers, Appl. Clay Sci. 99, 144-148, (2014).
- [31] M.J. Islam, J. Rahman, S. Nawshin, Comparative Study of Physical and Mechanical Properties of Machine and Manually Crushed Brick Aggregate Concrete, MIST Int. J. Sci. Technol. Comp. 32, 79-91(2020).
- [32] BS EN 13055-1. Lightweight Aggregates - Part 1: Lightweight Aggregates for Concrete, Mortar and Grout; British Standard: London, UK, 2002.
- [33] I. Dewa Made Alit Karyawan, J.J. Ekaputri, I. Widyatmoko, E. Ahyudanari, The effect of various Na2SiO3/NaOH ratios on the physical properties and microstructure of artificial aggregates, J. Eng. Sci. Technol. 15 (2), 1139-1154 (2020).
- [34] W. Zhou, P. Duan, C. Yan, Z. Zhang, X. Qiu, A comparative study of high- and low-Al2O3 fly ash based-geopolymers: the role of mix proportion factors and curing temperature, Materials and Design. 95, 63-74 (2016).
- [35] C. Bai, G. Franchin, H. Elsayed, A. Conte, P. Colombo, Macroporous structure, J. Eur. Ceram. Soc. 1-7 (2016).
- [36] C. Bai, T. Ni, Q. Wang, H. Li, P. Colombo, Porosity, mechanical and insulating properties of geopolymer foams using vegetable oil as the stabilizing agent, J. Eur. Ceram. Soc. 38 (2), 799-805 (2018).
- [37] F. Messina, Mechanical and thermal properties of lightweight geopolymer composites, 86, 266-272 (2018).
- [38] D.D. Burduhos Nergis, M.M.A.B. Abdullah, P. Vizureanu, The effect of Fly Ash/Alkaline Activator Ratio In Class F Fly Ash Based Geopolymers, European Journal of Materials Science and Engineering 2 (4), 111-118 (2017).
- [39] D.D. Burduhos Nergis, P. Vizureanu, I. Ardelean, A.V. Sandu, O. Corbu, E. Matei, Revealing the Influence of Microparticles on Geopolymers’ Synthesis and Porosity, Materials 13, 3211 (2020).
- [40] D. Kioupis, C. Kavakakis, S. Tsivilis, G. Kakali, Synthesis and Characterization of Porous Fly Ash-Based Geopolymers Using Si as Foaming Agent, Adv. Mater. Sci. Eng. 2018, 73-79 (2018).
Uwagi
1. The author would like to acknowledge the support from the Fundamental Research Grant Scheme (FRGS) under a grant number of FRGS/1/2019/TK10/UNIMAP/02/21 from the ministry of Education Malaysia.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b30ee819-a763-4322-bec4-90a65317e489