Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this research, our purpose is to investigate some types of solutions to a simplified modified form of the Camassa-Holm equation. The Jacobi elliptic function expansion method is applied to this equation. Then, a lot of travelling wave solutions are obtained. The derived solutions are in the form of Jacobi elliptic functions, hyperbolic functions, and trigonometric functions. Graphics of solutions are drawn in order to determine the types of the solutions. Furthermore, different kinds of solutions such as the singular kink wave solution, the kink wave solution, and the periodic solution are achieved.
Rocznik
Tom
Strony
31--40
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
- Sakarya University, Sakarya, Turkey
autor
- Sakarya University, Sakarya, Turkey
Bibliografia
- [1] Gao, Q., & Zhao, X. (2011). A generalized Tanh method and its application. Applied Mathematical Sciences, 5, 3789-3800.
- [2] Wazwaz, A. (2007). The extended tanh method for new solitons solutions for many forms of the fifth order KdV equations. Applied Mathematics and Computation, 184, 1002-1014.
- [3] Gözükızıl, O.F., & Akcagil, S. (2013). The tanh-coth method for some nonlinear pseudoparabolic equations with exact solutions. Advances in Difference Equations, DOI: 10.1186/1687-1847-2013-143.
- [4] Wazwaz, A., & Helal, A. (2005). Non linear variants of the BBM equation with compact and noncompact physical structures. Chaos, Solitons & Fractals, 26, 767-776.
- [5] Gao, T., & Tian, B. (2001). Generalized hyperbolic-function method with computerized symbolic computation to construct the solitonic solutions to nonlinear equations of mathematical physics. Computer Physics Communications, 133, 158-164.
- [6] He, J., & Zhang, L. (2008). Generalized solitary solution and compacton-like solution of the Jaulent-Miodek equations using the Exp-function method. Physical Letters A, 371, 1044-1047.
- [7] Wang, M., Li, X., & Zahng, J. (2008). The (G’/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Physical Letters A, 372, 417-423.
- [8] Akcagil, S., Aydemir, T., & Gözükızıl, O.F. (2015). Comparison between the new (G’=G) expansion method and the extended homogeneous balance method. New Trends in Mathematical Sciences, 3, 223-236.
- [9] Elwakil, S., El-Labany, K., Zahran, A., & Sabry, R. (2002). Modified extended tanh-function method for solving nonlinear partial differential equations. Physics Letters A, 299, 179-188.
- [10] Jafari, M.A., & Aminataei, A. (2010). Improvement of the homotopy perturbation method for solving nonlinear diffusion equations. Physica Scripta, 82, 015002.
- [11] Jawad, A.M., Petkovic, M.D., & Biswas, A. (2010). Modified simple equation method for nonlinear evolution equations. Applied Mathematics and Computation, 217, 869-877.
- [12] Liu, S.K., Fu, Z.T., & Liu, S.D. (2001). Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Physical Letters A, 289, 69-74.
- [13] Gündoğdu, H., & Gözükızıl, O.F. (2017). Solving Benjamin-Bona-Mahony equation by using the sn-ns method and the tanh-coth method. Mathematica Moravica, 21, 95-103.
- [14] Gündoğdu, H., & Gözükızıl, O.F. On The New Type Of Solutions To Benney-Luke Equation, BSPM - Sociedade Paranaense de Matemática, In Press doi:10.5269/bspm.41244.
- [15] Zhang, H. (2007). Extended Jacobi elliptic function expansion method and its applications. Communications in Nonlinear Science and Numerical Simulation, 12, 627-635.
- [16] Salas, A.H. (2012). Solving nonlinear partial differential equations by the sn-ns method. Abstract and Applied Analysis,25, 1-25.
- [17] Fuchssteiner, B., & Fokas, A.S. (1981). Symplectic structures, their Bachlund transformation and hereditary symmetries. Physica D, 4, 47–66.
- [18] Camassa, R., & Holm, D.(1993). An integrable shallow water equation with peaked solitons. Physical Review Letters, 71, 1661-1664.
- [19] Boyd, J.P.(1997). Peakons and cashoidal waves: travelling wave solutions of the Camassa-Holm equation. Applied Mathematical Computations, 81, 173-187.
- [20] Liu, Z., Wang, R., & Jing, Z. (2004). Peaked wave solutions of Camassa-Holm equation. Chaos, Solitons & Fractals, 19, 77-92.
- [21] Qian, T., & Tang, M. (2004). Peakons and periodic cusp waves in a generalized Camassa-Holm equation. Chaos, Solitons & Fractals, 12, 1347-1360.
- [22] Tian, L., & Song, X. (2004). New peaked solitary wave solutions of the generalized Camassa-Holm equation. Chaos, Solitons & Fractals, 19, 621-637.
- [23] Wazwaz, A. (2005). New compact and noncompact solutions for variants of a modified Camassa-Holm equation. Applied Mathematics and Computation, 163, 1165-1179.
- [24] Shen, J.W., & Xu, W. (2005). Bifurcations of smooth and non-smooth travelling wave solutions in the generalized Camassa-Holm equation. Chaos, Solitons & Fractals, 26, 1149-1162.
- [25] Bin, H., Rui, W., Chen, C., & Li, S. (2008). Exact travelling wave solutions of a generalized Camassa-Holm equation using the integral bifurcation method. Applied Mathematics and Computation, 206, 141-149.
- [26] Rui, W., Bin, H., Shaolong, X., & Yao, L. (2009). Application of the integral bifurcation method for solving modified Camassa-Holm and Degasperis Procesi equations. Nonlinear Analysis, 71, 3459-3470.
- [27] Bekir, A., & Guner, Ö . (2013). Topological(dark) soliton solutions for the Camassa-Holm type equations. Ocean Engineering, 74, 276-279.
- [28] Ali, A., Iqbal, M.A., & Mohyud Din, S.T. (2016). Travelling wave solutions of generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony and simplified modified form of Camassa-Holm equation exp(-ϕ(η)) expansion method. Egyptian Journal of Basic and Applied Sciences, 3, 134-140.
- [29] Salas, A.H. (2014). Exact solution to duffing equation and the pendulum equation. Applied Mathematical Sciences, 8, 8781-8789.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b3056557-aee1-4543-a9d5-d6c3d9ca605d