Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Low fracture toughness is a common problem encountered by many researchers in the application of pure TiB2 coatings. To improve their properties, a convenient and useful method is the use of doping, so this study proposes the deposition of TiB2 enriched with Zr on a steel substrate. The objective of the research was to investigate the impact of Zr addition to TiB2 coatings on both their mechanical and tribological properties. Four coatings with varying compositions (pure TiB2; TiB2 doped with 3, 6, and 10 at.% Zr) were deposited using magnetron sputtering from TiB2 and Zr targets. The coating structures were analyzed by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), and atomic force microscopy (AFM). Nanoindentation, scratch test, and ball-on-disk test were used to determine the mechanical and tribological properties. In most cases, only two factors have a significant impact on the mechanical and tribological properties of the Zr-doped coating. Firstly, a change in the preferred orientation of the coating from (102)(111) to (100) results in increased hardness and wear resistance. Secondly, a reduction in crystallite and column size enhances ductility and fracture toughness by impeding or altering the direction of crack propagation. Based on the study, one can conclude that the optimal Ti1-xZrxB2 properties were obtained for 6 at.% Zr content.
Czasopismo
Rocznik
Tom
Strony
art. no. e166, 2024
Opis fizyczny
Bibliogr. 43 poz., rys., wykr.
Twórcy
autor
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, al. A Mickiewicza 30, 30-059 Kraków, Poland
autor
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, al. A Mickiewicza 30, 30-059 Kraków, Poland
autor
- Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, al. A Mickiewicza 30, 30-059 Kraków, Poland
autor
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, al. A Mickiewicza 30, 30-059 Kraków, Poland
autor
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, al. A Mickiewicza 30, 30-059 Kraków, Poland
autor
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, al. A Mickiewicza 30, 30-059 Kraków, Poland
autor
- Łukasiewicz Research Network-Institute for Sustainable Technologies, ul. K. Pułaskiego 6/10, 26-600 Radom, Poland
- Łukasiewicz Research Network-Institute for Sustainable Technologies, ul. K. Pułaskiego 6/10, 26-600 Radom, Poland
Bibliografia
- 1. Hawryluk M, Lachowicz M, Zwierzchowski M, Janik M, Gronostajski Z, Filipiak J. Influence of the grade of hot work tool steels and its microstructural features on the durability of punches used in the closed die precision forging of valve forgings made of nickel-chrome steel. Wear. 2023;528–529:204963. https:// doi.org/10.1016/j.wear.2023.204963.
- 2. Pattnaik SK, Bhoi NK, Padhi S, Sarangi SK. Dry machining of aluminum for proper selection of cutting tool: tool performance and tool wear. Int J Adv Manuf Technol. 2018;98:55–65. https://doi.org/10.1007/s00170-017-0307-0.
- 3. Sugihara T, Singh P, Enomoto T. Development of novel cuttingtools with dimple textured surfaces for dry machining of aluminum alloys. Procedia Manuf. 2017;14:111–7. https://doi.org/10.1016/j.promfg.2017.11.013.
- 4. Fukui H, Okida J, Omori N, Moriguchi H, Tsuda K. Cutting performance of DLC coated tools in dry machining aluminum alloys. Surf Coat Technol. 2004;187:70–6. https://doi.org/10.1016/j.surfcoat.2004.01.014.
- 5. AriffT F, Paimin MF. Dry machining of T6061 aluminium alloy using titanium nitride (TiN) and titanium carbonitride (TiCN) coated tools. App Mech Mat. 2013;284–287:291–5. https://doi.org/10.4028/www.scientific.net/AMM.284-287.291.
- 6. Zhang J, Li S, Lu Ch, Sun C, Pu S, Xue Q, Lin Y, Huang M.Anti-wear titanium carbide coating on low-carbon steel by thermo-reactive diffusion. Surf Coat Technol. 2019;364:265–72.https://doi.org/10.1016/j.surfcoat.2019.02.085.
- 7. Smolik J, Kacprzyńska GJ, Sowa S, Piasek A. The analysis of resistance to brittle cracking of tungsten doped TiB 2 coatings obtained by magnetron sputtering. Coating. 2020;10:807.https://doi.org/10.3390/coatings10090807.
- 8. Holleck HW. Advanced concepts of PVD hard coatings. Vacuum. 1990;41:2220–2. https://doi.org/10.1016/0042-207X(90)94229-J.
- 9. Vajeeston P, Ravindran P, Ravi C, Asokamani R. Electronic structure, bonding, and ground-state properties of AlB2-type transition-metal diborides. Phys Rev B. 2001;63:045115. https://doi.org/10.1088/1361-648X/aca85f.
- 10. Twardowska A, Kopia A, Malczewski P. The microstructure, mechanical and friction-wear properties of (TiBx/TiSiyCz)x3 multilayer deposited by PLD on steel. Coatings. 2020;10:621. https://doi.org/10.3390/coatings10070621.
- 11. Wolfe DE, Singh J, Narasimhan K. Synthesis and characterization of multilayered TiC/TiB2 coatings deposited by ion beam assisted, electron beam–physical vapor deposition (EB–PVD). Surf Coat Technol. 2003;165:8–25. https://doi.org/10.1016/S0257-8972(02)00666-7.
- 12. Xian L, Li L, Fan H, Xian G, Zhao H. Effect of doping Al, Niand Zr on the properties of TiB 2 coatings: a first-principles study. Mater Today Commun. 2022;33:104844. https:// doi. org/ 10.1016/j.mtcomm.2022.104844.
- 13. Stuber M, Riedl H, Riedl T, Wojcik T, Ulrich S, Leiste H, May-rhofer PH. Microstructure of Al-containing magnetron sputtered TiB 2 thin films. Thin Solid Films. 2019;688:137361. https://doi.org/10.1016/j.tsf.2019.06.011.
- 14. Chudzik-Poliszak E, Cieniek Ł, Moskalewicz T, Kowalski K, Kopia A, Smolik J. Influence of W addition on microstructure and resistance to brittle cracking of TiB 2 coatings deposited by DCMS. Materials. 2021;14:466. https://doi.org/10.3390/ma14164664.
- 15. Cieniek L, Chudzik-Poliszak E, Moskalewicz T, Kopia A, Smolik J. Effect of chromium doping on the structure and mechanical properties of anti-wear TiB 2 coatings. Arch Civ Mech Eng.2023;23:80. https://doi.org/10.1007/s43452-022-00594-3.
- 16. Wang H, Wang B, Li S, Xue Q, Huang F. Toughening magnetron sputtered TiB 2 coatings by Ni addition. Surf Coat Technol.2013;232:767–74. https://doi.org/10.1016/j.surfcoat.2013.06.094.
- 17. Liu X, Xiao M, Liu M, Qiu Z, Zeng D. Preparation and enhanced wear resistance of HVAF-sprayed Fe-TiB 2 cermet coating reinforced by carbon nanotubes. Surf Coat Technol. 2021;408:126860.https://doi.org/10.1016/j.surfcoat.2021.126860.
- 18. Smolik J, Mazurkiewicz A, Garbacz H, Kopia A. Tungsten doped TiB 2 coatings obtained by magnetron sputtering. J Mach Constr Maint. 2018;4:27–32.
- 19. Schalk N, Tkadletz M, Mitterer Ch. Hard coatings for cutting applications: physical vs. chemical vapor deposition and future challenges for the coatings community. Surf Coat Technol. 2022;429:127949. https://doi.org/10.1016/j.surfcoat.2021.127949.
- 20. Ghailane A, Makha M, Larhlimi M, Alami J. Design of hard coatings deposited by HiPIMS and DCMS. Mater Lett. 2020;280:128540. https://doi.org/10.1016/j.matlet.2020.128540.
- 21. Meinhold V, Höhlich D, Mehner T, Lampke T. Electrodeposition of thick and crack-free Fe-Cr-Ni coatings from a Cr (III) electrolyte. Coatings. 2022;12:56. https://doi.org/10.3390/coatings12010056.
- 22. Cybroń J. Residual stress analysis after machining in composite materials based on aluminum alloy with ceramic additive. Mechanik. 2018;1:28–30. https:// doi. org/ 10. 17814/ mechanik.2018.1.4.
- 23. Burton AW, Ong K, Rea T, Chan I. On the estimation of average crystallite size of zeolites from the scherrer equation: a critical evaluation of its application to zeolites with one-dimensional pore systems. Mater Lett. 2009;117:75–90. https://doi.org/10.1016/j.micromeso.2008.06.010.
- 24. Archard JF. Contact and rubbing of flat surfaces. J Appl Phys. 1953;24(8):981–8. https://doi.org/10.1063/1.1721448.
- 25. Pelleg J, Zevin LZ, Lungo S, Croitoru N. Reactive-sputter-deposited TiN films on glass substrates. Thin Solid Films. 1991;197:117–28. https:// doi. org/ 10. 1016/ 0040- 6090(91)90225-M.
- 26. Fuger C, Hahn R, Hirle A, Kutrowatz P, Weiss M, Limbeck A, Hunold O, Polcik P, Riedl H. Revisiting the origins of super-hardness in TiB 2 +z thin films–impact of growth conditions and anisotropy. Surf Coat Technol. 2022;446:128806. https://doi.org/10.1016/j.surfcoat.2022.128806.
- 27. Zhang Y, Sanvito S. First-principles investigation of the thermo-dynamic stability of MB2 materials surfaces (M=Ti/Zr/Hf). J Am Ceram Soc. 2018;101(9):4118–27. https://doi.org/10.1111/jace.15547.
- 28. Nafsin N, Castro RHR. Direct measurements of quasi-zero grain boundary energies in ceramics. J Mater Res. 2017;32:166–73.https://doi.org/10.1557/jmr.2016.282.
- 29. Ding J, Lee D, Mei H, Zhang T, Kang M, Wang Q, Kim K. Influence of Si addition on structure and properties of TiB 2 -Si nanocomposite coatings deposited by high-power impulse magnetron sputtering. Ceram Int. 2019;45:6363–72. https://doi.org/10.1016/j.ceramint.2018.12.122.
- 30. Guemmaz M, Mosser A, Ahuja R, Parlebas J. Theoretical and experimental investigations on elastic properties of substoichio-metric titanium nitrides: influence of lattice vacancies. Int J Inorg Mater. 2001;3:1319–21. https://doi.org/10.1016/S1466-6049(01)00151-9.
- 31. Lofaj F, Moskalewicz T, Cempura G, Mikula M, Dusza J, Czyrska-Filemonowicz A. Nanohardness and tribological properties of nc-TiB 2 coatings. J Eur Ceram Soc. 2013;33:2347–53. https://doi.org/10.1016/j.jeurceramsoc. 2013.02.024.
- 32. Thornberg J, Palisaitis J, Hellgren N, Klimashin F, Ghafoor N, Zhirkov I, Azina C, et al. Microstructure and materials properties of understoichiometric TiBx thin films grown by HiPIMS. Surf Coat Technol. 2020;404:126537. https://doi.org/10.1016/j.surfcoat.2020.126537.
- 33. Lee SH, Nam KH, Hong SC, Lee JJ. Low temperature deposition of TiB 2 by inductively coupled plasma assisted CVD. Surf Coat Technol. 2007;201:5211–5. https:// doi. org/ 10. 1016/j. surfc oat.2006.07.209.
- 34. Mikula M, Grancic B, Roch T, Plecenik T, Vávra I, Dobrocka E, Satka A, Bursíková V, Drzík M, Zahoran M, Plecenik A, Kús P. The influence of low-energy ion bombardment on the microstructure development and mechanical properties of TiBx coatings. Vacuum. 2011;85:866–70. https://doi.org/10.1016/j.vacuum.2010.12.011.
- 35. Mayrhofer PH, Mitterer C, Wen JG, Greene JE, Petrov I. Self-organized nanocolumnar structure in superhard TiB2 thin films. App Phys Lett. 2005;86:131909. https://doi.org/10.1063/1.1887824g.
- 36. Kalfagiannis N, Volonakis G, Tsetseris L, Logothetidis S. Excessof boron in TiB 2 superhard thin films: a combined experimental and ab initio study. J Phys D Appl Phys. 2011;44:385402. https://doi.org/10.1088/0022-3727/44/38/385402.
- 37. Remediakis IN, Kopidakis G, Kelires PC. Softening of ultra-nanocrystalline diamond at low grain sizes. Acta Mater. 2008;56:5340–4. https://doi.org/10.1016/j.actamat.2008.07.014.
- 38. Holmberg K, Laukkanen A, Ronkainen H, Wallin K, Varjus S, Koskinen J. Tribological contact analysis of a rigid ball sliding ona hard coated surface Part I: modelling stresses and strains. Surf Coat Technol. 2006;200:3793–809. https://doi.org/10.1016/j.surfcoat.2005.03.040.
- 39. Park B, Jung D-H, Kim H, Yoo K-C, Lee J-J, Joo J. Adhesion properties of TiB 2 coatings on nitrided AISI H13 steel. Surf Coat Technol. 2005;200:726–9. https://doi.org/10.1016/j.surfcoat.2005.01.064.
- 40. Panich N, Sun Y. Effect of substrate rotation on structure, hardness and adhesion of magnetron sputtered TiB2 coating on high speed steel. Thin Solid Films. 2006;500(1–2):190–6. https://doi.org/10.1016/j.tsf.2005.11.055.
- 41. Contreras E, Galindez Y, Gomez MA. Microstructure, mechanical and tribological properties of TiBC coatings by DC magnetron sputtering onto AISI M2 steel using independent TiB 2 and graphite targets. Surf Coat Technol. 2018;350:298–306. https://doi.org/10.1016/j.surfcoat.2018.05.079.
- 42. Zhao G, Wang J, Deng Y, Yan T, Liang W, Li T, Zhang L, Jia Q, Wan Y. The study of the tribological properties of TiB 2 /Cr multi-layered coatings over a wide temperature range. J Mater Res Tech. 2022;16:290–301. https://doi.org/10.1016/j.jmrt.2021.11.158.
- 43. Zhou S, Qiu Z, Zeng D. Deformation mechanisms and crackroutes of CrAlN coatings. Mater Charact. 2020;167:110491.https://doi.org/10.1016/j.matchar.2020.110491.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b30439f3-3041-4ba3-9a4a-710c469fdece
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.