PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using a game engine to visualize the Main Building of the Warsaw University of Technology in a mobile application

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study presented in this article is to identify and analyse the problems which arise when creating a 3D model based on two-dimensional data and its import into a game engine and then developing algorithms to automate this process. The authors decided that they would use the Unity game engine to create an application presenting the results of modelling the interior of the Main Building of the Warsaw University of Technology. The work was divided into stages in which problems related to the adopted method were identified and the automation of selected activities was suggested. The main tasks performed during the study included processing the source data into a 3D model along with the correction of errors made during this process, detailing the model by adding characteristic elements of the building’s interior, and creating the so-called game scene in the Unity game engine along with the implementation of the application’s behaviour. The developed software can be integrated with indoor navigation systems, and the implemented scripts can be used during the preparation of other models.
Słowa kluczowe
Rocznik
Strony
61--73
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Warsaw University of Technology, Faculty of Geodesy and Cartography, Department of Cartography
  • Warsaw University of Technology, Faculty of Geodesy and Cartography, Department of Cartography
Bibliografia
  • Amirebrahimi S., Rajabifard A., Sabri S., Mendis P., 2016, Spatial information in support of 3D flood damage assessment of buildings at micro level: a review. In: 11th 3D Geoinfo Conference, Athens.
  • Buyuksalih I., Bayburt S., Buyuksalih G., Baskaraca A.P., Karim H., Rahman A.A., 2017, 3D modelling and visualization based on the unity game engine – advantages and challenges. “ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences” Vol. 4, no. 161.
  • Chen J., Clarke K.C., 2020, Indoor cartography. “Cartography and Geographic Information Science” Vol. 47, no. 2, pp. 95–109.
  • Cowan B., Kapralos B., 2014, An overview of serious game engines and frameworks. In: IEEE 14th International Conference on Advanced Learning Technologies, Athens.
  • de Heras Ciechomski P.M., Garcia J., Olariu R., Dindoyal I., Le Huu S., Reyes M., 2012, Development and implementation of a web-enabled 3D consultation tool for breast augmentation surgery based on 3D-image reconstruction of 2D pictures. “Journal of Medical Internet Research” Vol. 14, no. 1, p. 21.
  • Gimenez L., Hippolyte J.L., Robert S., Suard F., Zreik K., 2015, Review: reconstruction of 3D building information models from 2D scanned plans. “Journal of Building Engineering” Vol. 2, pp. 24–35.
  • Gotlib D., 2019, Selected qualities of mobile maps for indoor navigation. “Polish Cartographical Review” Vol. 51, no. 4, pp. 155–165.
  • Jayananda P.K.V., Seneviratne D.H.D., Abeygunawardhana P., Dodampege L.N., Lakshani A.M.B., 2018, Augmented reality based smart supermarket system with indoor navigation using beacon technology (asy shopping android mobile app). In: 2018 IEEE International Conference on Information and Automation for Sustainability (ICIAfS), pp. 1–6.
  • Johansson M., Roupé M., Bosch-Sijtsema P., 2015, Real-time visualization of building information models (BIM). “Automation in Construction“ No. 54, pp. 69–82.
  • Kedzierski M., Fryskowska A., 2015, Methods of laser scanning point clouds integration in precise 3D building modelling. “Measurement” No. 74, pp. 221–232.
  • Khoshelham K., Díaz-Vilariño L., 2014, 3D modelling of interior spaces: Learning the language of indoor architecture. “The International Archives of Photo-grammetry, Remote Sensing and Spatial Information Sciences” Vol. 40, no. 5, p. 321.
  • Lee J., 2016, Unreal Engine. Nauka pisania gier dla kreatywnych. Gliwice: Helion.
  • Lesparre J., Gorte B.G.H., 2012, Simplified 3D city models from LiDAR. In: XXII ISPRS Congress, Commission II, Melbourne, Australia, 25 August – 1 September 2012; IAPRS XXXIX-B2. International Society for Photogrammetry and Remote Sensing.
  • Liu K., Motta G., Tunçer B., Abuhashish I., 2017, A 2d and 3d indoor mapping approach for virtual navigation services. In: 2017 IEEE Symposium on Service-Oriented System Engineering (SOSE), pp. 102–107.
  • Löwner M.O., Gröger G., Benner J., Biljecki F., Nagel C., 2016, Proposal for a new LoD and multi-representation concept for CityGML. “ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences” Vol. 4.
  • Lv Z., Tek A., Da Silva F., Empereur-Mot C., Chavent M., & Baaden M., 2013, Game on, science-how video game technology may help biologists tackle visualization challenges. “PloS one” Vol. 8, no. 3.
  • Natephra W., Motamedi A., Fukuda T., Yabuki N., 2017, Integrating building information modeling and virtual reality development engines for building indoor lighting design. “Visualization in Engineering” Vol. 5, no. 1, pp. 1–21.
  • Open Geospatial Consortium, 2012, OGC City Geography Markup Language (CityGML) encoding standard. Tech. Rep. Nos. OGC 12-019, version 2.0.0. Wayland, MA.
  • Pal Sigh S., Jain K., Ravibabu Mandala V., 2014, Image based Virtual 3D Campus modeling by using CityEngine. “American Journal of Engineering Science and Technology Research”.
  • Pielak D., Kowalski M., Lebiedź J., 2018, 3D model preparing patterns for interactive urban visualization. “TASK Quarterly: Scientific Bulletin of Academic Computer Centre in Gdansk” Vol. 22, no. 4, pp. 341–349.
  • Rustagi T., Yoo K., 2018, Indoor AR navigation using tilesets. In: Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology, pp. 1–2.
  • Wagner A.A., 2001, Architektura Politechniki Warszawskiej. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej.
  • Xiong X., Adan A., Akinci B., Huber D., 2013, Automatic creation of semantically rich 3D building models from laser scanner data. “Automation in Construction” No. 31, pp. 325–337.
  • Xiong Y., Bulbul T., Reichard G., 2018, BIM and game engine integration for operational data monitoring in buildings. In: 7th International Building Physics Conference, IBPC2018.
  • Yin X., Wonka P., Razdan A., 2008, Generating 3d building models from architectural drawings: a survey. “IEEE Computer Graphics and Applications” Vol. 29, no. 1, pp. 20–30.
  • Internet sources
  • [1] CityGML, https://www.ogc.org/standards/citygml (access 17.05.2020).
  • [2] The Top 10 Video Game Engines, https://www.gamedesigning.org/career/video-game-engines/ (access 9.05.2020).
  • [3] Unity vs Unreal: Which Engine Should You Choose As A Beginner, https://www.youtube.com/watch?v=zsL6LYVYU5c (access 20.05.2020).
  • [4] Unity vs Unreal, Graphics Comparison, https://www.youtube.com/watch?v=S2eXK025uC4 (access 20.05.2020).
  • [5] Unity User Manual, https://docs.unity3d.com/Manual/index.html (access 20.05.2020).
  • [6] Forum Unity, https://forum.unity.com/ (access 20.05.2020).
  • [7] Unity, Plans and pricing, https://store.unity.com/ (access 13.04.2020).
  • [8] ESRI CityEngine, https://www.esri.com/en-us/arcgis/products/esri-cityengine/overview (access 13.04.2020).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b300b207-cd35-4f37-8788-f78f0c749243
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.