
1. Introduction

For years, computer game developers have
been building tools and programming com-
ponents enabling the creation and display of
attractive visualizations. A set of such tools
and programs which support the design of
games and their subsequent implementation
is referred to as a “game engine” (J. Lee 2016).
Game engines are developed independently
and used to create many games. They are also
available to other designers who use them to
implement their own projects. Due to their effec-
tive and attractive data visualization, they are
used not only in computer games, but also in
systems created for the purpose of scientific
research. There are numerous examples of the
use of game engines in various fields of science,
e.g. in medicine – a medical application for
surgery planning (P. de Heras Ciechomski et al.
2012), in biology – visualizations of molecules
of chemical substances for analysing their

impact on living organisms (Z. Lv et al. 2013) or
civil engineering – city visualization facilitating
urban planning (D. Pielak et al. 2018).

The growing interest in the use of game
engines in geoinformatics and cartography is
related to the visualization of spatial objects in
the main views of geoinformation applications.
In recent years, indoor navigation systems have
been developing dynamically, and thus there
is a need to create increasingly better maps,
including user-friendly 3D maps that facilitate
orientation in a closed space (J. Chen and
K.C. Clarke 2020). Creating such a map requires
the acquisition of three-dimensional spatial data
and the preparation of a multi-scale presenta-
tion, which is a challenge for the system cre-
ators (D. Gotlib 2019). Game engines facilitate
three-dimensional data visualization, which is
why they are often used in indoor navigation
systems. I. Buyuksalih et al. (2017) visualized
a city fragment with buildings saved in the

Polish Cartographical Review
Vol. 52, 2020, no. 2, pp. 61–73

DOI: 10.2478/pcr-2020-0006
	 Received: 05.05.2020
JACEK BERNARD MARCINIAK, HUBERT JANICKI	 Accepted: 09.08.2020
Warsaw University of Technology
Faculty of Geodesy and Cartography
Department of Cartography
https://orcid.org/0000-0003-3654-5187; jacek.marciniak@pw.edu.pl
https://orcid.org/0000-0002-6867-5069; janicki.hubert@gmail.com

Using a game engine to visualize the Main Building of the Warsaw
University of Technology in a mobile application

Abstract. The aim of the study presented in this article is to identify and analyse the problems which arise
when creating a 3D model based on two-dimensional data and its import into a game engine and then developing
algorithms to automate this process. The authors decided that they would use the Unity game engine to create
an application presenting the results of modelling the interior of the Main Building of the Warsaw University of
Technology. The work was divided into stages in which problems related to the adopted method were identified
and the automation of selected activities was suggested. The main tasks performed during the study included
processing the source data into a 3D model along with the correction of errors made during this process,
detailing the model by adding characteristic elements of the building’s interior, and creating the so-called game
scene in the Unity game engine along with the implementation of the application’s behaviour. The developed
software can be integrated with indoor navigation systems, and the implemented scripts can be used during
the preparation of other models.

Keywords: 3D modelling, 3D visualization, game engine, Unity, building model

mailto:jacek.marciniak@pw.edu.pl
https://orcid.org/0000-0002-6867-5069

62 Jacek Bernard Marciniak, Hubert Janicki

CityGML1 format. K. Liu (2017) created an in-
door navigation system displaying 3D models
automatically generated based on two-dimen-
sional floor plans saved in the SVG vector format.
P.K.V. Jayananda et al. (2018) and T. Rustagi
et al. (2018) developed an indoor navigation
systems using augmented reality, which were
also created using game engines.

Preparing a 3D building visualization requires
acquisition of spatial data and planning of the
modelling process. Part of new buildings are
designed using BIM (Building Information Mo-
deling) systems, thanks to which it is possible
to automatically generate a three-dimensional
model and use it in a game engine. This approach
was used in research conducted by Y. Xiong et al.
(2018) and W. Natephra et al. (2017). M. Jo-
hansson (2015) additionally analyses the per-
formance of an application for various types of
buildings, with varying details, and discusses
the typical challenges of BIM data modelling in
order to smoothly work with the model.

Unfortunately, BIM data are not available for
most buildings and to develop a 3D model it is
necessary to create it from scratch. An exact
model of a building can be obtained in the laser
scanning process, however, as shown by the
research of X. Xiong et al. (2013) and M. Ke-
dzierski and A. Fryskowska (2015), this process
requires advanced point cloud processing algo-
rithms and the detection of individual objects.
An alternative approach is to create a three-
-dimensional building model based on archi-
tectural and construction drawings (X. Yin et al.
2008, L. Gimenez 2015) or a hybrid approach,
in which laser scanning is used to fill missing
objects (K. Khoshelham and L. Díaz-Vilariño
2014).

In the presented study, the authors decided
to create a 3D model of a building based on
spatial data obtained from the vectorization of
raster architectural and construction drawings.
The expected effect was the creation of a mo-
bile application allowing a virtual walk inside
the building in which the user moves around
the model and the application displays his field
of view. Therefore, it was necessary to choose
an appropriate game engine to which the model
could be imported and easily used to create
a geoinformation mobile application. The aim

1  CityGML is an open XML-based spatial data format in-
troduced by the Open Spatial Consortium [1].

of the study was to identify and analyse problems
which arise when creating a 3D model based
on two-dimensional data and its importing into
the game engine, and then developing algo-
rithms automatically eliminating some errors
related to the adopted method.

The study was carried out for the Main Building
of the Warsaw University of Technology. The
building is a historic architectural structure built
at the turn of the 19th and 20th centuries. It
has four floors with the Main Hall in the central
part and a complex system of high corridors
between two wings of the building (A.A. Wagner
2001). Thanks to its heterogeneity and com-
plex structure, it is an interesting object and
a good test field for various systems operating
indoors, including navigation.

2. Selection of a game engine

Typical game engines offer tools for design-
ing animations, visual effects, rendering 2D and
3D objects, programming interactions between
objects according to the laws of physics, as well
as the use of artificial intelligence algorithms.
The game is implemented using scripts that
control the behaviour of a scene2 and handle
specific events. Game engines also provide
graphics editing tools for a game scene, sound,
and scripts. The game design toolkit often re-
sembles an integrated development environ-
ment (B. Cowan and B. Kapralos 2014).

The game engine for creating the applica-
tion assumed in the study had to be chosen at
the beginning, because the problems related
to the preparation of the model depend on the
selected tool. The authors considered only free
game engines. There are many such engines,
but according to numerous comparisons, the
two most popular are Unreal Engine and Unity [2].
Based on the analysis of materials [3] and [4],
the authors concluded that both engines would
enable the development of an application with
the desired functionality. They provide similar
functions and automatically generate applica-
tions for Android, iOS, Windows and OSX sys-
tems. Ultimately, the authors decided to choose
the Unity engine on the basis of a short test –
developing a simple game, consisting in moving

2  A game scene is a collection of objects and additional
elements, such as light sources, creating a virtual world in
the game.

63Using a game engine to visualize the Main Building of the Warsaw University of Technology...

a cubic block along an obstacle course with
the keyboard arrows. In the case of Unity, the
implementation of the task took much less time,
thanks to easier tools and the fact that the
authors had better knowledge of C# used in
Unity than C++ used in the Unreal Engine.

Unity uses a custom graphics rendering
engine with the nVidia PhysX3 physics engine.
The scene editor enables the drag-and-drop
functionality. The objects added to the project
are organized in the treelike structure, and the
behaviour of each object can be programmed
by scripts created in C#, JavaScript, or Boo
assigned to it. Unity Technologies (the developer
of Unity) provides full technical documentation
[5] with numerous examples and runs a forum
where all users can get support from both the
official technical support team and other, more
experienced programmers [6]. Unity offers paid
licences with extended functionality and free
versions, provided that the revenue from the
game does not exceed $ 100,000 per year [7].

3. Model creation process

The adopted in the study process of creating
the model, from source data to the final effect
was divided into the stages presented in figure 1.
Such a division made it possible to define in-
dependent data processing activities with well-
-defined initial and final conditions and to control
the process of creating the model at individual
stages. In the following chapters of this article,
the authors describe the implementation of the
process.

Stage 1 is the acquisition and processing of
2D data. Its result is a model of two-dimensio-
nal data for individual floors of the building. In
stage 2, the model is supplemented with infor-

3  A physics engine consists of algorithms that simulate
physical phenomena in the virtual world, e.g. gravitational
attraction.

mation that allows to present objects in three
dimensions, e.g. the height of floors, the height
of doors and windows and their distance from
the floor. Such a model is referred to in litera-
ture as the 2½D model, e.g. in J. Lesparre and
BGH Gorte (2012).

The next step involves creating an appro-
priate model in which the coordinates of all
points are three-dimensional. The intended
effect is obtained by determining the Z coordi-
nates of each point on the basis of information
about the heights from stage 2. In this stage, the
main body of the building is created, consisting
of buildings belonging to individual floors, and
some interior elements, such as partition walls,
doors and windows.

Stage 4 involves detailing the interior of the
building. The tasks of this stage include adding
objects that were not represented in the input
file, but are important in the 3D presentation
(e.g. benches and chairs) or applying textures
to model the appearance of walls, floors and
doors. In stage 4, the level of detail inside the
building and the accuracy of representing reality
increase. From the point of view of the classifi-
cation accuracy of building models proposed
by the Open Geospatial Consortium (2012),
the model created after step 3 and step 4 have
the LoD4 level (on a scale of LoD0-LoD4 – Level
of Details). This classification is insufficient to
describe the accuracy of the models, especially
in the context of modelling the interior of buildings.
Unfortunately, a different classification has not
yet been adopted, although several proposals
have already been made, e.g. M.O. Löwner
et al. (2016).

The last stage of working on the model is to
adapt it to the requirements of the presentation
in the game engine. Here, additional model
optimizations are performed in order to increase
the performance of the target application, the
so-called the game scene, and the lighting of the
building and mechanisms of moving inside it.

Fig. 1. The process of creating a 3D model for visualization in the game engine from two-dimensional
source data

64 Jacek Bernard Marciniak, Hubert Janicki

An important feature of the proposed division
into stages is that in each of them an independent
model is created, which can be visualized, ve-
rified, and used for specific purposes.

4. 2D source model of the building

The study used spatial data acquired as part
of scientific projects carried out at the Depart-
ment of Cartography of the Warsaw University
of Technology. This data was acquired as a result
of the vectorization of architectural and construc-
tion drawings, and then verified and updated
on the basis of measurements of objects indoors.
The spatial data was saved in the PL-2000 co-
ordinate system to facilitate its updating and
export to applications using local rectangular
reference systems.

The data model for the topography of the
building is based on ESRI’s BISDM 3.0 (Building
Interior Space Data Model). It is a vector data
model designed to represent the building, its
floors and space in 2D form. Individual objects
(e.g. walls) are given appropriate attributes,
including room height (S. Amirebrahimi et al.
2016), which makes it easier to create a 3D
model later.

The source model contained four classes
of features describing the topography of the
building: 1) IEA (Indoor Element Area), repre-
senting walls, doors and windows; 2) II (Indoor
Installation), the connections between floors,
e.g. stairs; 3) IS (Interior Space) room spaces;
and 4) ISF (Interior Space Floors). The objects
had an attribute denoting the storey to which
they were assigned. In the case of the Main
Building, nine storeys were distinguished, cor-
responding to the storeys of the building, and
the mezzanines with the library levels and the
entrance hall. Walls and doors also had an
attribute specifying their height, and windows
had information about their distance from the
floor. The source model can therefore be de-
scribed as 2½D.

5. Creating a 3D model of the building

a. GIS software used in 3D modelling

Three programs were taken into account for
the work on the 3D model: ESRI CityEngine,
SketchUp by Trimble, and Blender (freeware).
The drawback of SketchUp is that it does not

natively support the FBX4 data format. The
choice between the other two was made on
the basis of tests. In both applications, the
authors created a simple 3D model of a single-
-family house, including doors, windows and
textures applied to all of objects. Navigating in
both apps was intuitive, but in the CityEngine
creating and texturing the model was much
faster. Moreover, the speed of importing the
source model and program performance during
its edition were compared. Similar results were
achieved by both applications, navigating the
model was smooth and trouble-free. Ultimately,
the authors decided to use the CityEngine.

ESRI CityEngine is advanced 3D modelling
software. An innovative feature of CityEngine
is the so-called procedural approach to cre-
ating a model consisting in describing the mo-
del through a sequence of commands defining
the steps of creating geometric solids [8]. In
addition to the typical functions, the software
allows the model to be placed on the website
provided by ESRI. This solution makes it pos-
sible to present the results of your work using
a web browser (S. Pal Singh et al. 2014).

b. Preparation of the model

The three-dimensional building model was
developed from the source model described in
chapter 4 using the ESRI CityEngine software.
Then, it was exported to the FBX format, which
is a popular file format used to exchange 3D
models between graphics design programs.
The adopted approach was to create three-di-
mensional models of individual floors from
2½D data and then combine them into a single
building model. This process may have been
partially automated, but it was the source of
many errors, such as not matching the shape of
objects on adjacent floors or incorrect heights
of some doors and windows, requiring manual
adjustment.

The division of objects related to the source
model classes was insufficient for effective
work. Therefore, a division was made taking
into account more types of objects present in the
modelled building: walls, stairs, floors, windows,
doors, room ceilings, furniture, railings, the
external glass elevator and the ground repre-

4  FBX is a data format implemented by AutoDesk, used
to import and export 3D models.

65Using a game engine to visualize the Main Building of the Warsaw University of Technology...

senting two interior courtyards of the Main
Building. Each object was assigned an attribute
specifying its type. This made it easier to work
with the model in CityEngine, because based
on the value of the attribute, layers were defined,
the visibility of which could be turned off while
working with the model. This division was also
used when automatically applying textures to
all objects in a given layer and when exporting
the model to the game engine.

c. Correction of door heights

Some of the objects representing the doors
were exported with an incorrect height, more-
over, the objects above them did not completely
fill the plane of the wall (fig. 2A). The problem
was that all doors were automatically assigned
a fixed height in the source model, while some
of them were non-standard. Therefore, it was
necessary to review all the doors in the building
to find their actual height, and move the wall
over their top edge. The results of the correc-
tions are presented in figure 2B. The authors
attempted to automate this process, but due to
the fact that each space had a different size, it
was impossible to implement a universal script

and a time-consuming modification of the model
was necessary.

d. Filling in the missing parts of the staircase
in the Main Hall

The staircase modelling in the Main Hall was
also a time-consuming process. In the source
model, not all the objects constituting it were
present, there were no pillars supporting the
successive levels of stairs. Moreover, it was
necessary to correct the geometry of the objects
making up the staircase in order to adjust them
to each other and to the adjacent walls and
floors. The results of the corrections are pre-
sented in figure 3. This problem is related to
the adopted method of 3D model creation. In
the source data, successive storeys contained
two-dimensional objects without depicting
several objects one above the other. For this
reason, the pillars above the stair railings and
some other objects were omitted.

e. Matching adjacent floors

The biggest problem with the adopted model
creation process were the differences in shapes

Fig. 2. Correction of the door height: A) before the change, B) after the change

66 Jacek Bernard Marciniak, Hubert Janicki

of adjacent objects on different floors. The effect
can be observed when the floors are connected
by stairs, which in the model were part of the
lower storey, and their top often did not match
the shape of the upper story. The problem re-
quired manual geometry correction for all stairs.

A similar situation occurred at joints of co-
lumns on the border of the floors (fig. 4). After
analysing the source materials, the authors
concluded that the discrepancies between the
storeys were due to several factors:

• structural elements of the building, which
are in fact tilted or crooked, were shown as
straight from their outline near the floor,

• the 2D model was created from low-quality
architectural and construction materials,

the complex geometry of the decorative co-
lumns was generalized for each level separately,

• without taking into account the topological
relationships between the floors.

Ultimately, the problem was not completely
eliminated due to the large number of correc-

Fig. 3. The appearance of the staircase: A) before the corrections, B) after adding the pillars

Fig. 4. Inaccurate alignment of the shapes of objects on adjacent floors

67Using a game engine to visualize the Main Building of the Warsaw University of Technology...

tions needed. Continuing the study, the authors
plan to automate the process and outline the
columns the same way for all storeys.

6. Refinement of the 3D model

a. Applying textures

Applying textures is a key part of Stage 4.
The user can compare the pattern or characte-
ristic features of the appearance of objects,
which makes it easier to identify them in space.
With the help of textures, it is also possible to
simulate small objects, such as handles, knobs
or decorations.

Textures were applied to all objects inside
the building, including floors, walls, windows, etc.
To this end, it was necessary to acquire photos
of the building taken under good lighting condi-
tions. Then, the photos were transformed into
textures using CityEngine’s built-in tool. It allows
to edit textures, including to transform photos
into textures, taking into account the conver-
sion from central projection to orthogonal projec-
tion using the Helmert conformal transformation.
Thanks to the division into layers, the textures
were applied automatically to certain objects
(e.g. windows, walls and doors). In the case of
floors, the application of textures required ma-

nual adjustment due to the variety of texture
patterns (e.g. wooden parquet).

b. Modelling the stairs

In the source model, stairs that connect dif-
ferent storeys are represented by rectangles.
The three-dimensional model of the building
with such stairs looks very unnatural, as the
stairs resemble ramps and distract the user’s
attention (fig. 5A).

Attempts to solve the problem by applying
textures did not give satisfactory results and it
was necessary to modify the stairs by creating
individual steps. The authors implemented
a script that automatically generated steps
based on the height of the stairs. In the next
step, the script applied textures taking into
account different patterns on the top, bottom
and side surfaces of each step. An example of
the appearance of stairs generated with the
script is presented in figure 5B.

c. Adding room numbers on the doors

An important element that facilitates moving
around the building are the numbers on the
doors. Initially, the authors tried to faithfully re-
produce the actual location and size of the

Fig. 5. Stairs A) before and B) after applying the modelling script

68 Jacek Bernard Marciniak, Hubert Janicki

digits, but the model prepared in this way made
it impossible to read the number while virtually
moving along the corridors. For this reason, it
was decided to put enlarged room numbers on
the doors, slightly lower than in reality, making
them easily noticeable from a distance and at
a slight angle5 (fig. 6).

d. Adding interior elements

As part of the next task, interior elements
were added to the model. Due to the size of the
facility and the presence of numerous frescoes,
paintings, commemorative plaques and monu-
ments, the authors decided to prepare the in-
terior of lecture room 315 as a representative
fragment of the model.

Room 315 can accommodate about 200
people, and its characteristic feature is a stair-
case arrangement of individual levels with
benches. The floor of the room is divided into
thirteen levels, of which twelve are benches. In
order to obtain models of equipment objects,
the authors made manual measurements of
the room with accuracy to 1 cm using a tape
measure. In this way, the width and height of
the stairs and benches, the distance between
the benches and the walls, the width of the
central passage between the benches, the di-
mensions of the platform for the teacher and
the dimensions of the board located in the centre
of the room were acquired. Using the PL-2000
reference system in the model facilitated the
process of placing objects on the basis of the
measured distance. The results of the work
are presented in figure 7.

7. Preparing the model for display
in the Unity

a. Creating a scene in the Unity

After modelling the spatial data, the model
was imported into the Unity scene editor. Data
exchange between CityEngine and Unity was
performed using the FBX format.

After importing the model, the reference sys-
tem was changed to move the point (0.0) to
the centre of the building. Thanks to this, the

5  Due to the time-consuming nature of the process, the
authors decided to put the numbers on the doors only in
selected corridors in the prototype application.

game engine can more efficiently and accurately
perform calculations on numbers with a small
absolute value. On the other hand, it does not
affect the possibility of integration with other
systems, because it is easy to convert the co-
ordinates to the PL-2000 reference system.

b. Adding light sources to the scene

When creating the game scene, the next
step was to add the appropriate light sources.
In the case of the visualization of the Main
Building of the Warsaw University of Techno-
logy, the authors made an attempt to faithfully
reproduce the lighting coming from the lamps
in the building.

The authors experimented with various types
of lighting and finally decided to reject the choice
of spot light sources imitating lamps in favour
of point light sources in order to speed up the
application. The arrangement of point lights
gives a similar effect to spot lights while main-
taining the smooth operation of the application
(fig. 8).

c. Adding colliders

A collider is an invisible and impenetrable
surface that, when applied to objects, prevents

Fig. 6. Door with room number

69Using a game engine to visualize the Main Building of the Warsaw University of Technology...

them from penetrating one another. Thanks to
this, it is possible to introduce a virtual character
moving through the scene, who cannot move
through the walls. In the case of the applica-
tion created by the authors, a character means
a virtual, invisible person whose field of view is
displayed on the device screen. In designing
the movement of the building, colliders were
added to the walls and floors, leaving the pos-
sibility of moving through corridors and entering
selected rooms through doors.

d. Navigation around the building

The Unity game engine provides a component
called “RigidBodyFPSController” containing
a set of methods that support the movement of
characters in a virtual world using keyboard
arrows and computer mouse movements. Due
to the fact that the application was to be run on
mobile devices with touch screens, it was
necessary to implement own mobility mecha-
nisms. For this purpose, three controls were
added to the screen (fig. 9):

• joystick (no.1) responsible for moving for-
ward, backward, left and right,

• button (no. 2) responsible for jumping,
• invisible panel (no. 3) changing the direc-

tion in which the camera is pointing.
An interesting mechanism used in the appli-

cation is the possibility of using elevators. If
the user enters an elevator, a dialog box is dis-
played to select the floor to which they will be
transferred (fig. 10).

An additional facilitation when moving inside
the building is the ability to quickly move to de-
fined places. When the user clicks the “Menu”
button located in the upper left corner of the
window, a dialog box appears with a list of places
to which the user can move (fig. 11).

Fig. 7. The appearance of lecture hall 315 (the ceiling has been removed for better visibility)

Fig. 8. Arrangement of point lights on the scene,
top view

70 Jacek Bernard Marciniak, Hubert Janicki

Fig. 9. Navigation in the application

Fig. 10. Floor selection panel in the elevator

Fig. 11. List of defined places in the building, to which you can quickly move, displayed after clicking
the “Menu” button

71Using a game engine to visualize the Main Building of the Warsaw University of Technology...

e. Optimization of the mobile application

In the process of developing computer games,
it is important to optimize the game scene in
order to obtain high performance of the appli-
cation. Performance can be measured as CPU
load, GPU load, or RAM usage. However, in the
case of games, the most commonly measured
parameter is FPS (Frames Per Second). 30 FPS
is the limit value below which the animation is
not smooth.

After importing the model from CityEngine
and creating the game scene, the application
was very slow. A scene analysis allowed to
identify potential causes of the problem. The
data model consisted of approximately 26,000
objects that the Unity engine rendered separa-
tely. Moreover, the scene contained over 100
spot lights simulating the actual lighting of the
building, but significantly increasing the com-
plexity of calculations.

The authors conducted an analysis that
allowed to confirm the causes of the problem
and prepare an optimized data model. For this
purpose, the application was prepared for
testing by placing the FPS counter on the main
screen and adding the function of saving this
value to a text file every 1 second.

4 building models were prepared for testing:
• Model 1 with 26,000 objects and over 100

light sources.
• Model 2 in which the number of objects

was reduced to 500, combining objects with
the same texture. The “Merge meshes by ma-
terial” option was used when exporting the
model in CityEngine.

• Model 3 with optimized light sources. Instead
of 100 spot lights, 6 point sources were used
to obtain similar illumination of the scene.

• Model 4 containing both the optimized
number of objects and light sources.

Each model was tested in the application,
collecting FPS readings as the user moves
along the four paths. The paths are designed
in such a way that they pass through various
characteristic parts of the model:

• Path 1 along the corridors on the fourth floor
– a small number of objects visible on the screen
at the same time.

• Path 2 passing through the Main Hall –
a large, open space.

• Path 3 going up the stairs – steps created
automatically by scripts.

• Path 4 inside room 315 – a fragment of the
model with the greatest detail.

FPS measurements were taken every second
and lasted approximately one minute. Meas
urements started after waiting ten seconds after
starting the application to eliminate the influence
of other factors, such as the time to load the
entire model into memory. Table 1 shows the
mean FPS values determined in ten tests for
each of the four models and each of the four
test paths.

The performed study confirmed that in order
to obtain smooth operation of the application, it
was necessary to optimize the model by sig-
nificantly reducing the number of objects. In
addition, it was important to reduce the number
of light sources placed on the scene. Taking
both optimizations into account allowed for
a smooth display of the model with over 50 FPS.

When comparing the test results of the models
for different test paths, significant differences
for models 2 and 3 could be noticed. The FPS
values clearly depend on the test path – on the
number of displayed objects for model 2 and
the number of visible light sources for model 3.
For model 4, the differences in FPS for different
paths are small, and therefore this model did
not require further optimization.

8. Summary and conclusions

As part of the study, it was possible to model
the Main Building of the Warsaw University of
Technology and to implement an application
that enables a virtual walk around the building,
which the authors plan to make available in
Google Play. The use of the Unity game engine

Table 1. Average FPS values for four paths and four
models; 10 tests were performed for each scenario

Path 1 Path 2 Path 3 Path 4

Model 1 8.1 6.9 6.4 7.2

Model 2 14.8 18.7 13.3 19.5

Model 3 18.4 13.6 15.1 12.3

Model 4 52.6 51.6 52.1 52.5

72 Jacek Bernard Marciniak, Hubert Janicki

facilitated the creation of a mobile application
and enabled an attractive presentation of a three-
-dimensional building model. The application
can be used in the future to visualize other
models, but it can also be used as a compo-
nent in indoor navigation systems.

As the study showed, it is possible to create
a three-dimensional building model based on
2D source data for individual floors, although
the model creation process requires modifying
objects that cannot be represented as two-di-
mensional data. During the work, there were
problems related to modelling 3D buildings,
creating mobile applications displaying three-
-dimensional models, and problems closely
related to the selected approach to the project.
In line with the aim of the study, the problems
were identified and described, and many of
them were solved with implemented scripts
automating the work. Unfortunately, not all tasks
could be accelerated and some corrections in
the data had to be done manually, making the
process more time-consuming. Many of the

solved problems are typical for the chosen
method of creating a 3D model of the building,
so the developed scripts can be reused in the
future.

Continuing the research, the authors plan to
improve the building model by eliminating the
remaining errors in the geometry of the objects
and modelling additional details in the corridors
and the Main Hall. The possibility of using the
obtained visualization for indoor navigation
opens up new research directions related to 3D
cartographic presentation.

Acknowledgements

The authors would like to express special
thanks to Miłosz Gnat for valuable advice related
to the selection of IT tools and help in solving
several key problems.

The research described in this article is based
in part on the results of Hubert Janicki’s engin
eering thesis under the supervision of Jacek
Bernard Marciniak, defended in February 2020.

Literature

Amirebrahimi S., Rajabifard A., Sabri S., Mendis P.,
2016, Spatial information in support of 3D flood
damage assessment of buildings at micro level: a
review. In: 11th 3D Geoinfo Conference, Athens.

Buyuksalih I., Bayburt S., Buyuksalih G., Baskaraca A.P.,
Karim H., Rahman A.A., 2017, 3D modelling and
visualization based on the unity game engine –
advantages and challenges. “ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial In-
formation Sciences” Vol. 4, no. 161.

Chen J., Clarke K.C., 2020, Indoor cartography. “Car-
tography and Geographic Information Science”
Vol. 47, no. 2, pp. 95–109.

Cowan B., Kapralos B., 2014, An overview of serious
game engines and frameworks. In: IEEE 14th In-
ternational Conference on Advanced Learning
Technologies, Athens.

de Heras Ciechomski P.M., Garcia J., Olariu R., Din-
doyal I., Le Huu S., Reyes M., 2012, Development
and implementation of a web-enabled 3D consul-
tation tool for breast augmentation surgery based
on 3D-image reconstruction of 2D pictures. “Journal
of Medical Internet Research” Vol. 14, no. 1, p. 21.

Gimenez L., Hippolyte J.L., Robert S., Suard F.,
Zreik K., 2015, Review: reconstruction of 3D build-
ing information models from 2D scanned plans.
“Journal of Building Engineering” Vol. 2, pp. 24–35.

Gotlib D., 2019, Selected qualities of mobile maps
for indoor navigation. “Polish Cartographical Review”
Vol. 51, no. 4, pp. 155–165.

Jayananda P.K.V., Seneviratne D.H.D., Abeygun-
awardhana P., Dodampege L.N., Lakshani A.M.B.,
2018, Augmented reality based smart supermarket
system with indoor navigation using beacon tech-
nology (asy shopping android mobile app). In: 2018
IEEE International Conference on Information and
Automation for Sustainability (ICIAfS), pp. 1–6.

Johansson M., Roupé M., Bosch-Sijtsema P., 2015,
Real-time visualization of building information
models (BIM). “Automation in Construction“ No. 54,
pp. 69–82.

Kedzierski M., Fryskowska A., 2015, Methods of laser
scanning point clouds integration in precise 3D build-
ing modelling. “Measurement” No. 74, pp. 221–232.

Khoshelham K., Díaz-Vilariño L., 2014, 3D modelling
of interior spaces: Learning the language of indoor
architecture. “The International Archives of Photo-
grammetry, Remote Sensing and Spatial Informa-
tion Sciences” Vol. 40, no. 5, p. 321.

Lee J., 2016, Unreal Engine. Nauka pisania gier dla
kreatywnych. Gliwice: Helion.

Lesparre J., Gorte B.G.H., 2012, Simplified 3D city
models from LiDAR. In: XXII ISPRS Congress,
Commission II, Melbourne, Australia, 25 August –
1 September 2012; IAPRS XXXIX-B2. Internation-
al Society for Photogrammetry and Remote
Sensing.

Liu K., Motta G., Tunçer B., Abuhashish I., 2017, A 2d
and 3d indoor mapping approach for virtual navi-
gation services. In: 2017 IEEE Symposium on

73Using a game engine to visualize the Main Building of the Warsaw University of Technology...

Service-Oriented System Engineering (SOSE),
pp. 102–107.

Löwner M.O., Gröger G., Benner J., Biljecki F., Na-
gel C., 2016, Proposal for a new LoD and multi-rep-
resentation concept for CityGML. “ISPRS Annals
of Photogrammetry, Remote Sensing & Spatial
Information Sciences” Vol. 4.

Lv Z., Tek A., Da Silva F., Empereur-Mot C., Chavent M.,
& Baaden M., 2013, Game on, science-how video
game technology may help biologists tackle visu-
alization challenges. “PloS one” Vol. 8, no. 3.

Natephra W., Motamedi A., Fukuda T., Yabuki N.,
2017, Integrating building information modeling
and virtual reality development engines for building
indoor lighting design. “Visualization in Engineer-
ing” Vol. 5, no. 1, pp. 1–21.

Open Geospatial Consortium, 2012, OGC City Geo
graphy Markup Language (CityGML) encoding
standard. Tech. Rep. Nos. OGC 12-019, version
2.0.0. Wayland, MA.

Pal Sigh S., Jain K., Ravibabu Mandala V., 2014,
Image based Virtual 3D Campus modeling by using
CityEngine. “American Journal of Engineering
Science and Technology Research”.

Pielak D., Kowalski M., Lebiedź J., 2018, 3D model
preparing patterns for interactive urban visualiza-
tion. “TASK Quarterly: Scientific Bulletin of Aca-
demic Computer Centre in Gdansk” Vol. 22, no. 4,
pp. 341–349.

Rustagi T., Yoo K., 2018, Indoor AR navigation using
tilesets. In: Proceedings of the 24th ACM Sympo-
sium on Virtual Reality Software and Technology,
pp. 1–2.

Wagner A.A., 2001, Architektura Politechniki War-
szawskiej. Warszawa: Oficyna Wydawnicza Poli-
techniki Warszawskiej.

Xiong X., Adan A., Akinci B., Huber D., 2013, Automatic
creation of semantically rich 3D building models
from laser scanner data. “Automation in Construc-
tion” No. 31, pp. 325–337.

Xiong Y., Bulbul T., Reichard G., 2018, BIM and game
engine integration for operational data monitoring
in buildings. In: 7th International Building Physics
Conference, IBPC2018.

Yin X., Wonka P., Razdan A., 2008, Generating 3d
building models from architectural drawings: a survey.
“IEEE Computer Graphics and Applications” Vol. 29,
no. 1, pp. 20–30.

Internet sources

[1] CityGML, https://www.ogc.org/standards/citygml
(access 17.05.2020).

[2] The Top 10 Video Game Engines, https://www.
gamedesigning.org/career/video-game-engines/
(access 9.05.2020).

[3] Unity vs Unreal: Which Engine Should You Choose
As A Beginner, https://www.youtube.com/watch?v=
zsL6LYVYU5c (access 20.05.2020).

[4] Unity vs Unreal, Graphics Comparison,
 https://www.youtube.com/watch?v=S2eXK025uC4

(access 20.05.2020).
[5] Unity User Manual, https://docs.unity3d.com/Man-

ual/index.html (access 20.05.2020).
[6] Forum Unity, https://forum.unity.com/ (access

20.05.2020).
[7] Unity, Plans and pricing, https://store.unity.com/

(access 13.04.2020).
[8] ESRI CityEngine, https://www.esri.com/en-us/

arcgis/products/esri-cityengine/overview (access
13.04.2020).

https://www.esri.com/en-us/arcgis/products/esri-cityengine/overview
https://www.esri.com/en-us/arcgis/products/esri-cityengine/overview

	_GoBack
	_Hlk45803999
	_Hlk45982466
	_Hlk45888900
	_Hlk45889425
	_Hlk45889945
	_Hlk8379403
	_Hlk45892317
	_Hlk45892627
	_Hlk45892826
	_Hlk45894049
	_Hlk45894683
	_Hlk45895078
	_Hlk45895429
	_Hlk8382011
	_Hlk45896079
	_Hlk45962259
	_Hlk45962612
	_Hlk45962935
	_Hlk45964455
	_Hlk45802011
	_Hlk45965581
	_Hlk45967493
	_Hlk45801958
	_Hlk48685796
	_gjdgxs
	_fob9te
	_znysh7
	_tyjcwt

