PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Properties of chirped periodic layered medium with metamaterial layers

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of the article was to investigate the absorption and reflectance properties of chirped periodic layered medium with metamaterial layers. Design/methodology/approach: The use of the algorithm TMM (Transfer Matrix Method) allows to determine the absorption and reflectance for the quasi one-dimensional multilayer structures. Can be analysed structure constructed with RHM (right-handed materials) and LHM (left-handed materials) with layers of any thickness and arranged in any way. It is possible to analyse lossy dispersive materials. Findings: In all the cases studied linear shift in the peaks with an increase in the k coefficient was observed. In all cases there was a shift to higher wavelengths. Noted an increase in the intensity and broadening half-width of the peaks. Research limitations/implications: The simulation was carried out only for the binary structure in the visible light range. Practical implications: Computer simulations allow us to design material with specified properties at a lower cost. The use of chirped periodic layered media allows to shift and broadening of the peak in the required range of work for mirrors or filter. Originality/value: Absorption and reflectance for chirped periodic layered systems using metamaterials layers have not yet been thoroughly investigated. Research can contribute to the implementation of mirrors with specific nonlinear properties.
Słowa kluczowe
Rocznik
Strony
13--19
Opis fizyczny
Bibliogr. 44 poz., rys.
Twórcy
autor
  • Institute of Physics, Technical University of Czestochowa, Al. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • Institute of Physics, Technical University of Czestochowa, Al. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • Institute of Physics, Technical University of Czestochowa, Al. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • Institute of Physics, Technical University of Czestochowa, Al. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • Institute of Materials Engineering, Technical University of Czestochowa, Al. Armii Krajowej 19, 42-200 Częstochowa, Poland
Bibliografia
  • [1] M. Born, E. Wolf, Principles of Optics, Pergamon Press, London, 1968.
  • [2] P. Yeh, Optical Waves in Layered Media, John Wiley & Sons, New York 1988.
  • [3] L.M. Briechowski, Wołny w słoistych sriedach, Nauka, Moskwa, 1973.
  • [4] A. Yariv, P. Yeh, Optical Waves in Crystals. Propagation and Control of Laser Radiation, John Wiley & Sons, New York, 1984.
  • [5] A. Rostami, S. Matloub, Exactly solvable inhomogeneous Fibonacci-class quasi-periodic structures (optical filtering), Optics Communications 247/4-6 (2005) 247-256.
  • [6] S. John, Strong localization of photons in certain disordered dielectric superlattices, Physical Review Letters 58/23 (1987) 2486-2489.
  • [7] E. Yablonovitch, Inhibited Spontaneous Emission in Solid-State Physics and Electronics, Physical Review Letters 58/20 (1987) 2059-2062.
  • [8] E. Yablonovitch, Photonic crystals, semiconductors light, World of Science 126/2 (2002) 46-53 (in Polish).
  • [9] J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals. Molding the Flow of Light, Princeton University Press, Singapore, 1995.
  • [10] S.G. Johnson, J.D. Joannopoulos, Photonic Crystals. The Road from Theory to Practice, Kluwer Academic Publishers, Boston, 2002.
  • [11] D.J. Lockwood, L. Pavesi (Ed.), Silicon Photonics, Springer-Verlag, Heidelberg, 2004.
  • [12] K. Sakoda, Optical Properties of Photonic Crystals, Springer-Verlag, Berlin, 2001.
  • [13] A. Bjarklev, J. Broeng, A.S. Bjarklev, Photonic Crystal Fibers, Kluwer Academic Publishers, Boston, 2003.
  • [14] D.S. Shechmtan, I. Blench, D. Gratias, J.W. Cahn, Metallic phase with long-ranged orientational order and no translational symmetry, Physical Review Letters 53/20 (1984) 1951-1953.
  • [15] D. Levine, P. J. Steinhardt, Quasicrystals: A new class of ordered structures, Physical Review Letters 53, 2477–2480 (1984)
  • [16] D. Levine, P.J. Steinhardt, Quasicrystals. I. Definition and structure, Physical Review B 34/2 (1986) 596-616.
  • [17] P.J. Steinhardt, S. Ostlund, The Physics of Quasi-crystals,World Scientific, Singapore, 1987.
  • [18] P. Guyot, P. Krammer, M. de Boissieu, Quasicrystals, Reports on Progress in Physics 54 (1991) 1373-1425.
  • [19] D.P. DiVincenzo, P.J. Steinhardt (Ed.), Quasicrystals: The State of the Art, World Scientific, Singapore, 1991.
  • [20] S.J. Poon, Electronic properties of quasicrystals. An experimental review, Advances in Physics 41/4 (1992) 303-363.
  • [21] Ch. Hu, R. Wang, D.-H. Ding, Symmetry groups, physical property tensors, elasticity and dislocations in quasicrystals, Reports on Progress in Physics 63 (2002) 1-39.
  • [22] L. Esaki, R. Tsu, Superlattice and negative differential conductivity in semiconductors, IBM Journal of Research and Development 14/1 (1970) 61-65.
  • [23] A. Wacker, Semiconductor superlattices: a model system for nonlinear transport, Physics Report 357 (2002) 1-111.
  • [24] M. Gluck, A.R. Kolovsky, H.J. Korsch, Wannier-Stark resonances in optical and semiconductor superlattices, Physics Report 366 (2002) 103-182.
  • [25] E.L. Albuquerque, M.G. Cottam, Theory of elementary excitations in quasicrystals structures, Physics Report 376 (2003) 225-337.
  • [26] E. Abe, Y. Yan, S.J. Pennycook, Quasicrystals as cluster aggregates, Nature Materials 3 (2004) 759-767.
  • [27] X. Zhou, Ch. Hu, P. Gong, Sh. Qiu, Nonlinear elastic properties of decagonal quasicrystals, Physical Review B 70 (2004) 94202-94206.
  • [28] L. Jacak, P. Hawrylak, A.Wójs, Quantum Dots, Springer-Verlag, Berlin-Heidelberg-New York, 1998.
  • [29] H.S. Nalwa (Ed.), Nanostructured Materials and Nanotechnology, Academic Press, New York, 2002.
  • [30] M. Kohler, W. Fritzsche, Nanotechnology: an introduction to nanostructuring techniques, Wiley-VCH Verlag, Weinheim, 2004.
  • [31] Z.L. Wang, Y. Liu, Z. Zhang (Ed.), Handbook of nanophase and nanostructured materials, Vol. 1: Synthesis, Kluwer Academic/Plenum Publishers, New York, 2003.
  • [32] M. Jurczyk, J. Jakubowicz, Ceramic nanomaterials, Poznan University of Technology Publishing Hause, Poznań, 2004 (in Polish).
  • [33] V.G. Veselago, Elektrodinamika veshchestv s odnovremeno otricatelnymi znacheniami ε i μ, Usp. Fiz. Nauk 92 (1968) 517-529.
  • [34] D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite Medium with Negative Permeability and Permittivity, Physical Review Letters 84/18 (2000) 4184-4187.
  • [35] E. Cubukcu, K. Aydin, E. Ozbay S. Foteinopoulou, C.M. Soukoulis, Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens, Physical Review Letters 91/20 (2003) 207401-1-207401-4.
  • [36] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C.M. Soukoulis, Electromagnetic waves: Negative refraction by photonic crystals, Nature 423 (2003) 604-605.
  • [37] K.Y. Bliokh, Y.P. Bliokh, What are the left-handed media and what is interesting about them, Physics-Uspekhi 47/4 (2004) 393-400.
  • [38] P. Markos, C.M. Soukoulis, Left-handed Materials, in: B. van Tiggelen, S. Skipetrov (Eds.), Wave Scattering in Complex Media: From Theory to Applications, Kluwer Publsher, 2003, 309.
  • [39] A.L. Pokrovsky, A.L. Efros, Sign of refractive index and group velocity in left-handed media, S Solid State Communications 124 (2002) 283-287.
  • [40] C.M. Krowne, Y. Zhang (Eds.), Physics of Negative Refraction and Negative Index Materials, Springer, 2007.
  • [41] S.A. Ramakrishna, T.M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials, SPIE Press and CRC Press, 2009.
  • [42] A. Klauzer-Kruszyna, Propagation of polarized light in selected aperiodic superstructures, PhD Thesis, Wrocław, 2005 (in Polish).
  • [43] S. Garus, M. Duś-Sitek, E. Zyzik, The influence of iron impurities on the properties of the superlattice transmission FexNi (1-x) / Cu, Proceedings of the XII International Scientific Conference “New Technologies and Achievements in Metallurgy and Materials Science”, Częstochowa, 2011 (in Polish).
  • [44] S. Garus, J. Garus, K. Gruszka, Emulation of Electromagnetic Wave Propagation in Superlattices Using FDTD Algorithm. in: H. Dyja, A. Kawałek (Eds.), A Collective Monograph: New Technologies and Achievements in Metallurgy and Materials Engineering, Chapter 2, Technical University of Czestochowa WIPMiFS Publishing House, 2012, 768-771.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2ff20c7-ee5a-40d1-9db1-3fed80309690
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.