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Abstract: Given a linear dynamical system, we investigate the
linear infinite dimensional system obtained by grafting an age struc-
ture. Such systems appear essentially in population dynamics with
age structure when phenomena like spatial diffusion or transport
are also taken into consideration. We first show that the new sys-
tem preserves some of the wellposedness properties of the initial one.
Our main result asserts that if the initial system is null controllable
in a time small enough then the structured system is also null con-
trollable in a time depending on the various involved parameters.
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1. Introduction

Infinite dimensional dynamical systems coupling age structuring with diffusion
or transport phenomena appear naturally in population dynamics, medicine or
epidemiology (see, for instance, Brikci et al., 2008; Webb, 1985,1988; Magal and
Ruan, 2018). A by now classical example is the Lotka-McKendrick system with
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spatial diffusion (Gurtin, 1973). For the convenience of the reader, we describe
below the type of systems to be considered using a simplified example. To this
aim, let X (the state space) and U (the input space) be finite dimensional inner
product spaces. Our departure point is the linear time invariant control system
described by

ṗ(t) = Ap(t) +Bu(t), (1)

where A : X → X and B : U → X are linear operators. The system (1) is
supposed to describe the evolution of a certain population density (particles, in-
dividuals,. . . ) and it is possibly obtained by approximating a partial differential
system. Adding an age structure to the system described by (1) means that we
assume that p depends not only on t, but also on the age parameter a, which
lies in some bounded interval [0, a†]. Moreover, we assume that individuals can
die (with a certain probability) before the limit age a† or be born at a certain
fertility rate. In this situation, the original system (1) becomes

ṗ(t, a) +
∂p

∂a
(t, a) = Ap(t, a)− µ(a)p(t, a) + χ(a)Bu(t, a), (2)

p(t, 0) =

∫ a†

0

β(a)p(t, a) da, (3)

where µ and β are the mortality and fertility rates, respectively, and χ is the
characteristic function of some subinterval of [0, a†].

ForX = U = C, A = 0 and B = 1 in the original system (1), the correspond-
ing age structure system (2) becomes the classical Lotka-McKendrick system,
which has been first studied, from the controllability perspective, in Barbu et
al. (2001). This problem was recently revisited by Hegoburu et al. (2018),
Maity (2019), and by Hegoburu and Aniţa (2019). One of the consequences of
our main results improves the above mentioned ones, in the sense that for every
n, m ∈ N, X = Cn, U = Cm, such that the original system (1) is controllable,
then, under appropriate assumptions on µ, β and χ, the same property holds
for the corresponding age structured system (2) (see Subsection 4.1 further on).

The main focus in this work is on the more complicated situation, where
X and U are possibly infinite dimensional spaces, with the operators A and B
possibly unbounded. We think, in particular, of the case when X = L2(Ω),
where Ω ⊂ Rn is an open bounded set, A is an advection-diffusion operator and
B describes a boundary or internal control. From the controllability viewpoint,
particular cases of such systems have been studied in several papers. The first
ones are probably Aniseba and Aniţa (2001, 2004) (see also Aniseba, 2012;
Hegoburu and Tucsnak, 2018; and Maity, Tucsnak and ZuaZua, 2019) .

The main results in this article assert that in the infinite dimensional case
(namely when (1) is a PDE system with distributed or boundary control), the
wellposedness and null controllability of the system described by (1) are inher-
ited by the corresponding age structured system (2). One of the advantages
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of this approach is that it allows for obtaining in a unified manner a variety
of results existing in the literature, such as those corresponding to an operator
A, describing diffusion (possibly with singular coefficients) or transport phe-
nomena, with an operator B, corresponding to a distributed control. Moreover,
we obtain controllability results, which seem new, in the case of an unbounded
control operator B (corresponding to boundary control problems).

To give a precise description of our results, we introduce some notation. Let
A : D(A) → X be the generator of the C0 semigroup S on the Hilbert space X
and let U be another Hilbert space. Both X and U will be identified with their
duals. Let B be a (possibly unbounded) linear operator from U to X , which
is supposed to be an admissible control operator for S (see Section 2 for the
precise definition of this concept). In the examples we have in mind, the above
spaces and operators describe the dynamics of a system without age structure.
In particular, X is the state space and U is the control space. The corresponding
age structured system is obtained by first extending these spaces to

X = L2(0, a†;X), (4)

U = L2(0, a†;U), (5)

where a† > 0 denotes the maximal age individuals can attain. Let p(t) ∈ X
be the distribution density of the individuals with respect to age a > 0 and at
some time t > 0. Then, the abstract version of the Lotka-McKendrick system
to be considered in this paper writes:





∂p

∂t
+
∂p

∂a
−Ap+ µ(a)p = 1(a1,a2)Bu, t > 0, a ∈ (0, a†),

p(t, 0) =

∫ a†

0

β(s)p(t, s) ds, t > 0,

p(0, a) = p0,

(6)

where 1 is the characteristic function of the interval (a1, a2) with 0 6 a1 < a2 6

a† and p0 is the initial population density. In the above system, the positive
function µ : [0, a†] → R+ denotes the natural mortality rate of individuals of age
a. We denote by β : [0, a†] → R+ the positive function, describing the fertility
rate at age a.We assume that the fertility rate β and the mortality rate µ satisfy
the conditions
(H1) β ∈ L∞(0, a†), β > 0 for almost every a ∈ (0, a†).
(H2) µ ∈ L∞[0, a∗] for every a∗ ∈ (0, a†), µ > 0 for almost every a ∈ (0, a†).

(H3)

∫ a†

0

µ(a) da = +∞.

For more details about the modelling of such system and the biological signifi-
cance of the hypotheses, we refer to Webb (1985).

Before we state our main result, let us introduce the notion of null control-
lability of the pair (A,B).
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Definition 1.1 We say that a pair (A,B) is null-controllable in time τ, if for
every z0 ∈ X there exists a control u ∈ L2(0, τ, U) such that the solution of the
system

ż(t) = Az(t) +Bu(t) t ∈ [0, τ ], z(0) = z0,

satisfies z(τ) = 0.

The main result of this paper is:

Theorem 1.1 Assume that β and µ satisfy the conditions (H1)-(H3) above.
Moreover, suppose that the fertility rate β is such that

β(a) = 0 for all a ∈ (0, ab), (7)

for some ab ∈ (0, a†) and that a1 < ab. Let us assume that the pair (A,B) is
null controllable in any time τ > τ0, with

0 6 τ0 < τ, τ = min{a2 − a1, ab − a1}. (8)

Then, for every τ > a1 + a† − a2 + 2τ0 and for every p0 ∈ X there exists a
control v ∈ L2(0, τ ;U) such that the solution p of (6) satisfies

p(τ, a) = 0 for all a ∈ (0, a†). (9)

This result can be seen as a generalization of those obtained in Aniseba
and Aniţa (2001, 2004); Aniseba (2012); Hegoburu and Tucsnak (2018); Maity,
Tucsnak and Zuazua (2019) in the case when A is an elliptic operator with
Neumann or Dirichlet homogeneous boundary conditions, or in Aniseba et al.
(2013), Boutaayamou and Echarroudi (2017), or Fragnelli (2018), when A is
a degenerate elliptic operator. As shown in Section 4, our approach applies,
besides the above mentioned examples, to operators A such that the systems
without age structure describe fractional diffusion, transport phenomena or even
Schrödinger type dynamics, with internal or boundary control.

The proof of the above theorem relies on final state observability of its ad-
joint system. This consists of combining the characteristics method with final
state observability of the pair (A∗, B∗), with no reference to the methodology
employed to prove this observability result for the system without age structure.
This idea was already used in Maity, Tucsnak and Zuazua (2019) where A was
second order elliptic differential operator and B was interior control operator.

The remaining part of this work is organized as follows: In Section 2, we
study the wellposedness of the system (6) and we determine its adjoint. Section 3
is devoted to the proof of Theorem 1.1. In Section 4, we give several applications
of our main theorem. In Section 5 we study controllability of the system (6)
with regular controls.
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2. Wellposedness of the system (6)

In this section, we rewrite (6) as an abstract control system. Next, we study the
wellposedness of this system and we determine the adjoint of the corresponding
semigroup generator.

Let us remind that if A generates a C0-semigroup S on X , then there exist
M > 1 and ω such that

‖St‖ 6Meωt, for all t > 0. (10)

We denote by A∗ the adjoint of A. Then A∗ generates a C0-semigroup S∗ =
(S∗t )t>0 on X. Moreover,

‖S∗t‖ 6Meωt, for all t > 0. (11)

We define Xd
1 = D(A∗) equipped with the graph norm. Let X−1 be the dual of

Xd
1 with respect to the pivot space X. In particular,

Xd
1 ⊂ X ⊂ X−1,

with continuous and dense embeddings. It is known (see, for instance, Tucsnak
and Weiss, 2009, Section 2.10) that S extends to a C0 semigroup on X−1, whose
generator, which is an extension of A, has the domain X .

Let B ∈ L(U,X−1) and τ > 0. We define ΦA
τ ∈ L(L2(0,∞;U), X−1) by

ΦA
τ u =

∫ τ

0

Sτ−sBu(s) ds. (12)

We introduce admissible control operators:

Definition 2.1 (Tucsnak and Weiss, 2009, Definition 4.2.1) The operator
B ∈ L(U,X−1) is called an admissible control operator for S if for some τ > 0,
Ran ΦA

τ ⊂ X.

The above admissibility condition can also be reformulated in terms of the
adjoint of the operators (see Tucsnak and Weiss, 2009, Proposition 4.4.1). The
operator B ∈ L(U,X−1) is an admissible control operator for S, if and only if,
for all τ > 0, there exists a constant Cτ > 0 such that

∫ τ

0

‖B∗
S
∗
t z‖

2
Udt 6 Cτ‖z‖

2
X, ∀z ∈ D(A∗). (13)

Reminding that the input space X and the control space U for the cor-
responding age structured system are defined in (4) and (5), respectively, we
introduce the operator A : D(A) → X , defined by

D(A) =
{
ϕ ∈ C([0, a†];X) | ϕ(0) =

∫ a†

0

β(a)ϕ(a)da,−
∂ϕ

∂a
+Aϕ− µϕ ∈ X

}
,
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Aϕ = −
∂ϕ

∂a
+Aϕ− µϕ. (14)

Let us set

X−1 = L2(0, a†;X−1) (15)

and we introduce the control operator B ∈ L(U ,X−1), defined by

Bu = 1(a1,a2)Bu (u ∈ U). (16)

With the above notation, we rewrite the system (6) as

ṗ = Ap+ Bu, p(0) = p0. (17)

We now show that A generates a C0-semigroup on X under the assumption
that A generates a C0 semigroup on X . More precisely:

Theorem 2.1 Assume A generates a C0 semigroup on X. Then A, defined in
(2), generates a C0 semigroup on X .

The proof of this theorem is divided into several parts. We are going to
follow the approach of Webb (2008) and Walker (2013). Upon integrating along
the characteristic lines, the solution of (17) with u = 0, at least formally, can
be written as

p(t, a) =





π(a)

π(a− t)
Stp0(a− t), t < a,

π(a)Sabp0
(t− a) t > a,

(18)

where

π(a) = e
−

∫ a

0

µ(s)ds

is the probability of survival of an individual from age 0 to a and bϕ(t) is the
unique continuous solution of the following linear Volterra integral equation in
X :

bϕ(t) =

∫ t

0

β(a)π(a)Sabϕ(t− a) + St

∫ a†−t

0

β(a+ t)
π(a+ t)

π(a)
ϕ(a) da, (19)

where the last integral is 0 if t > a†. This motivates us to define a semigroup T

on X as follows:

Ttϕ =






π(a)

π(a− t)
Stϕ(a− t), t < a,

π(a)Sabϕ(t− a) t > a.

(20)
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Note that

bϕ(t) =

∫ a†

0

β(a)Ttϕ(a) da. (21)

The following result can be obtained along the lines of Webb (2008, Theorem
4) (see also Walker, 2013, Theorem 2.2):

Proposition 2.1 The family of operators T defined in (20) is a C0-semigroup
on X .

Let A denote the generator of the semigroup T. Therefore, to prove Theo-
rem 2.1 we only need to show A = A, where A is defined in (2). To this aim,
we first prove the following result :

Lemma 2.1 Let A be the unbounded operator defined in (2). Then, λI − A is
onto for λ large enough.

Proof Given λ > 0, f ∈ X and ψ ∈ X, we consider the following problem

λϕ+
∂ϕ

∂a
−Aϕ+ µϕ = f, ϕ(0) = ψ. (22)

Since A generates a C0-semigroup on X, the above problem admits a unique
solution ϕ ∈ C([0, a†];X), given by

ϕ(a) = e−λaπ(a)Saψ +

∫ a

0

e−λ(a−s)π(a− s) Sa−sf(s) ds. (23)

From the above formula, we obtain

ϕ(0)−

∫ a†

0

β(a)ϕ(a)da

= ψ −

∫ a†

0

e−λaπ(a)β(a)Saψ da−

∫ a†

0

β(a)

∫ a

0

e−λ(a−s)π(a)Sa−sf(s) dsda.

(24)

Now, consider the operator F(λ) ∈ L(X) defined by

F(λ)ψ =

∫ a†

0

e−λaπ(a)β(a)Saψ da. (25)

Using (10), we have

‖F(λ)ψ‖X 6M‖β‖L∞(0,a†)
1

λ− ω
‖ψ‖X .

Thus, lim
λ→∞

‖F(λ)‖L(X) = 0, and we clearly have that I −F(λ) is invertible for

large λ. Let us take

ψ = (I −F(λ))−1

∫ a†

0

β(a)

∫ a

0

e−λ(a−s)π(a− s)Sa−sf(s) dsda.
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Then, using (2) it is easy to see that ϕ, defined by (23), with the above choice
of ψ satisfies the following system

λϕ+
∂ϕ

∂a
−Aϕ = f, ϕ(0) =

∫ a†

0

β(a)ϕ(a) da.

Thus, λI − A is onto. Moreover, the unique solution of the above system is
given by

ϕ(a) = e−λaπ(a)Sa(I −F(λ))−1

(∫ a†

0

β(a)

∫ a

0

e−λ(a−s)π(a− s)Sa−sf(s)dsda

)

+

∫ a

0

e−λ(a−s)π(a− s)Sa−sf(s)ds. (26)

�

Now we show that the generator of the semigroup T coincides with A.

Proposition 2.2 Let Ã be the generator of the semigroup T and let A be de-
fined in (2). Then, Ã = A.

Proof Let ϕ ∈ D(A). Let λ > 0 sufficiently large and we set f := λϕ− Ãϕ.
Then, using (31), we have

ϕ(a) =

∫ ∞

0

e−λt
Ttf(a)dt =

∫ a

0

e−λt π(a)

π(a− t)
Stf(a− t)dt+

∫ ∞

a

e−λtπ(a)Sabf(t− a)dt

=

∫ a

0

e−λ(a−s)π(a− s)Sa−sf(s)ds+ e−λaπ(a)Sa

∫ ∞

0

e−λtbf (t)dt. (27)

Now, using (21) and (31), we get

∫ ∞

0

e−λtbf (t) dt =

∫ a†

0

β(a)

∫ ∞

0

e−λt
Ttf(a) dtda

=

∫ a†

0

β(a)

∫ a

0

e−λt π(a)

π(a− t)
Stf(a− t) dtda

+

∫ a†

0

β(a)

∫ ∞

a

e−λtπ(a)Sabf (t− a) dtda

=

∫ a†

0

β(a)

∫ a

0

e−λ(a−s)π(a− s)Sa−sf(s) dsda

+

∫ a†

0

e−λaβ(a)π(a)Sa

∫ ∞

0

e−λtbf (t) dtda.

Therefore,
∫ ∞

0

e−λtbf(t) dt = (I−F(λ))−1

∫ a†

0

β(a)

∫ a

0

e−λ(a−s)π(a−s)Sa−sf(s) dsda,
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where F(λ) is defined in (25). Using the above relation in (27) and comparing
this expression with (26) one can easily see that ϕ ∈ D(A). We have thus proven

that D(Ã) ⊂ D(A) and

Ãϕ = −
∂ϕ

∂a
+Aϕ− µϕ = Aϕ (ϕ ∈ D(Ã)). (28)

Conversely, let us assume that ϕ ∈ D(A). For λ sufficiently large, we define

f := λϕ+ ∂ϕ
∂a −Aϕ+µϕ. Then, f ∈ X . Set ψ = (λI−A)−1f ∈ D(Ã). Therefore,

using (28) we have that

λ(ϕ− ψ) +
∂

∂a
(ϕ− ψ)−A(ϕ − ψ) + µ(ϕ − ψ) = 0.

Thus,

ϕ− ψ = e−λaπ(a)Sa(ϕ− ψ)(0).

Using the definition of F(λ) in (25), it is easy to see that the above relation is
equivalent to

(I −F(λ))(ϕ − ψ)(0) = 0.

Hence, for λ sufficiently large, ϕ(0) = ψ(0) and therefore ϕ = ψ ∈ D(Ã). This
completes the proof of the proposition. �

Proof of Theorem 2.1 The proof of this theorem follows from Proposition 2.1
and Proposition 2.2. �

Remark 2.1 An alternative proof of Theorem 2.1 can be obtained by combining
the results in Magal and Rual (2018, Section 3.8) with a perturbation result of
Desch-Schappcher type (see, for instance, Tucsnak and Weiss 2009, Section
5.4).

Next we show that B defined in (16) is an admissible control operator:

Lemma 2.2 Let us assume that B ∈ L(U,X−1) is an admissible control operator
for S. Then, the operator B ∈ L(U ,X−1) defined in (16) is an admissible control
operator for the semigroup T generated by A.

Proof The proof follows easily from Definition 2.1 and the fact that B is
an admissible control operator. �

Using Theorem 2.1 and Lemma 2.2, we have the following wellposedness
result of the system (17) (see, for instance Tucsnak and Weiss, Proposition
4.2.5):

Theorem 2.2 For every p0 ∈ X and for every u ∈ L2(0, a†;U) the system (17)
admits a unique solution

p ∈ C([0, a†];X ).
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With the above notation our main result in Theorem 1.1 can be restated as:
If the pair (A,B) is null controllable in time τ0, then the pair (A,B) is null
controllable in time τ > a1 + a† − a2 + 2τ0. To prove this assertion, we are
going to use the fact that null controllability of the pair (A,B) at time τ is
equivalent to final state observability in time τ of the pair (A∗,B∗). In the
following theorem we determine the adjoint of A and B. To this aim, we first
consider an auxiliary operator A0, defined by

D(A0) =

{
ψ ∈ X | q(t, a†) = 0,

∂ψ

∂a
− µψ +A∗ψ ∈ X

}
, (29)

A0ψ =
∂ψ

∂a
− µψ +A∗ψ.

We have the following proposition:

Proposition 2.3 The operator A0 is the infinitesimal generator of a C0-semigroup
T0 on X . Moreover,

‖T0
t‖ 6Meωt, (30)

where M and ω are defined in (11).

Proof The proof of this proposition is similar to that of Theorem 2.1. We
briefly sketch the idea. By integrating along the characteristic lines, we define
the semigroup T0 on X as follows:

T
0
tϕ =






π(a)

π(a+ t)
S
∗
tϕ(a+ t), t < a† − a,

0 t > a† − a.

(31)

As S∗t is a C0-semigroup, it follows that Tt is also a C0-semigroup (see Propo-
sition 2.1). Moreover, proceeding as in Proposition 2.2 we can show that the
domain of the semigroup T0

t is A0. The estimate (30) is easy to obtain from the
expression of the semigroup T0

t . �

The result below gives the adjoint operators of A and B. We skip its proof
since it is fully similar to the one given for Maity et al. (2019, Proposition 2.3).

Proposition 2.4 The adjoint of A in X is defined by

D(A∗) = D(A0), A∗ψ =
∂ψ

∂a
− µψ +A∗ψ + β(a)ψ(0).

Moreover, B∗ ∈ L(L2(0, a†;D(A∗));U), defined by

B∗ψ = 1(a1,a2)B
∗ψ,

where B∗ ∈ L(D(A∗), U) is the adjoint of the operator B.
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We end this subsection with the following result, which will be required later
on.

Lemma 2.3 Assume the hypothesis of Lemma 2.2. Then, there exists a constant
Cτ > 0 such that the solution ϕ to the system

ϕ̇ = A0ϕ+ f(t) t ∈ [0, τ ], ϕ(0) = 0, (32)

satisfies

∫ τ

0

‖B∗ϕ‖2U 6 Cτ‖f‖L2(0,τ ;X ), (33)

for every f ∈ L2(0, τ ;X ).

Proof We first note that B ∈ L(U ,X−1), defined in (16), is also an
admissible control operator for the semigroup T

0, generated by A0. The result
follows from Curtain and Weiss (1989, Theorem 5.1 and Remark 5.4). �

3. An observability inequality

3.1. The results

As mentioned above, the null-controllability of a pair (A, B) is equivalent to
the final state observability of the pair (A∗,B∗), see Tucsnak and Weiss (2009,
Theorem 11.2.1). Recall that the final-state observability of (A∗,B∗) is defined
as

Definition 3.1 (Tucsnak and Weiss, 2009) The pair (A∗,B∗) is final state
observable in time τ if there exists a kτ > 0 such that

‖T∗
τq0‖

2
X 6 k2τ

∫ τ

0

‖B∗
T
∗
τ q0‖

2
U , (q0 ∈ D(A∗)).

For A defined in (2) and q0 ∈ X we set

q(t) = T
∗
t q0 (t > 0),

where T is the semigroup generated by A. According to Proposition 2.4, q
satisfies, for t > 0, a ∈ (0, a†):






∂q

∂t
−
∂q

∂a
−A∗q − β(a)q(t, 0) + µ(a)q = 0,

q(t, a†) = 0,

q(0, a) = q0(a).

(34)

In view of Tucsnak andWeiss (2009, Theorem 11.2.1), the statement in Theorem
1.1 is equivalent to the following theorem:
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Theorem 3.1 Assume that β and µ satisfy the conditions (H1)-(H3). More-
over, suppose that the fertility rate β is such that

β(a) = 0 for all a ∈ (0, ab), (35)

for some ab ∈ (0, a†) and that a1 < ab. Let us assume that the pair (A∗, B∗) is
final state observable in time τ > τ0, with

0 6 τ0 < τ, τ = min{a2 − a1, ab − a1}. (36)

Then, the pair (A∗,B∗) is final-state observable for every τ > a1+a†−a2+2τ0.
In other words, for every τ > a1 + a† − a2 + τ0 there exists kτ > 0 such that the
solution q of (34) satisfies

‖q(τ)‖2X 6 k2τ

∫ τ

0

‖B∗q(t)‖2U dt, (q0 ∈ D(A∗)). (37)

Remark 3.1 Using the expression of B∗ it is easy to see that the inequality (37)
reads as

∫ a†

0

‖q(τ, a)‖2X da 6 κ2τ

∫ τ

0

∫ a2

a1

‖B∗q(t, a)‖2U dadt, (38)

for any q0 ∈ D(A∗).

The main idea of the proof is to use final state observability of the pair
(A∗, B∗) along the characteristic lines. We first have the following proposition,
which is an easy consequence of the final state observability of the pair (A∗, B∗).

Proposition 3.1 Let us assume that the pair (A∗, B∗) is final state observable
in any time T > T0 with T0 > 0. Let C(T ) be the observability cost with C(T ) →
∞ as T → T0. Let T1, T2 and T3 be three real numbers such that

0 6 T1 < T2 6 T3 with T2 − T1 > T0.

Then for every w0 ∈ D(A∗), the solution w of the problem

dw

dt
= A∗w t ∈ [T1, T3], w(T1) = w0, (39)

satisfies the estimate

‖w(T3)‖
2
X 6Meω(T3−T2)C(T2 − T1)

∫ T2

T1

‖B∗w(s)‖2U ds, (40)

where M and ω are defined in (11).

Proof By the semigroup property (11), it is easy to see that

∥∥w(T3)
∥∥2

X
6Meω(T3−T2)

∥∥w(T2)
∥∥2
X
.
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Now, applying the final state observability of (A∗, B∗) over the time interval
[T1, T2], we obtain

∥∥w(T2)
∥∥2

X
6 C(T2 − T1)

∥∥B∗w(s)
∥∥2

U
ds.

Combining the above two estimates we conclude the proof of the proposition.
�

The following three propositions are crucial in proving Theorem 3.1.

Proposition 3.2 Let us assume the hypothesis of Theorem 3.1. Let

τ > τ0 + a1.

Then, for every q0 ∈ D(A∗), the solution q of the system (34), verifies

∫ a1

0

‖q(τ, a)‖2Xda 6

MCµe
ωa1 max

{
C(τ − a1), C(a2 − a1)

}∫ τ

0

∫ a2

a1

‖B∗q(t, a)‖2U da dt, (41)

where Cµ = e2‖µ‖L1[0,a0] .

Proof Let us recall that τ is defined by τ = min{a2 − a1, ab − a1}. Thus,
without loss of generality we can assume that a2 6 ab. Since β(a) = 0 for all
a ∈ (0, a2), q satisfies

∂q

∂t
−
∂q

∂a
−A∗q + µ(a)q = 0, t > 0, a ∈ (0, a2). (42)

We set

q̃(t, a) = q(t, a) e
−

∫ a

0

µ(r) dr
. (43)

Then, q̃ satisfies

∂q̃

∂t
−
∂q̃

∂a
−A∗q̃ = 0, t > 0, a ∈ (0, a2). (44)

Without loss of generality, let us assume that

τ < a2, τ > a2 − a1. (45)

We set b0 = a2 − τ and we split the interval (0, a1) as follows

(0, a1) = (0, b0) ∪ (b0, a1). (46)

Let us remark that, the choices in (45) are made to cover all possible scenarios.
Indeed, if τ < a2−a1, we can choose b0 = a1, or, if τ > a2, we choose b0 = 0.We
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are going to use Proposition 3.1 along the characteristics. In the remaining part

of the proof we give upper bounds for

∫

I

‖q̃(τ, a)‖2Xda where I is successively

each one of the intervals appearing in the decomposition (46).

Upper bound on (0, b0):

For a.e. a ∈ (0, b0), we first set

w(s) = q̃(s, a+ τ − s) s ∈ (0, τ).

Then, w satisfies

∂w

∂s
−A∗w = 0, s ∈ (0, τ). (47)

Applying Proposition 3.1, with T0 = τ0, T1 = 0, T2 = τ + a − a1 and T3 = τ ,
we obtain

‖w(τ)‖2X 6Meω(a1−a)C(τ + a− a1)

∫ τ+a−a1

0

‖B∗w(s)‖2U ds.

In terms of q̃, the above inequality writes

‖q̃(τ, a)‖2X 6Meω(a1−a)C(τ+a−a1)

∫ τ+a−a1

0

‖B∗q̃(s, a+τ−s, x)‖2U ds =

=Meω(a1−a)C(τ + a− a1)

∫ τ+a

a1

‖B∗q̃(τ + a− s, s)‖2U ds.

Integrating with respect to a over (0, b0) we obtain

∫ b0

0

‖q̃(τ, a)‖2X da 6Meωa1C(τ−a1)

∫ b0

0

∫ τ+a

a1

‖B∗q̃(τ+a−s, s)‖2U dsda

=Meωa1C(τ − a1)

∫ a2

a1

∫ b0

s−τ

‖B∗q̃(τ + a− s, s)‖2U dads

=Meωa1C(τ − a1)

∫ a2

a1

∫ a2−s

0

‖B∗q̃(r, s)‖2U drds

6 Meωa1C(τ − a1)

∫ τ

0

∫ a2

a1

‖B∗q̃(t, a)‖2U dadt. (48)

Upper bound on (b0, a1):

For a.e. a ∈ (b0, a1), we define

w(s) = q̃(s, a+ τ − s) s ∈ (τ + a− a2, τ).
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Figure 1. An illustration of the choice made in (45): the dashed (—–) region
corresponds to the interval (0, b0). Since τ > a1, the trajectory γ(s) := (τ−s, a+
s), s ∈ [0, τ ] (or equivalently the backward characteristics starting from (τ, a))
enters the observation region (a1, a2)× (0, τ) at s = a1 − a. At s = τ, γ(s) hits
the line t = 0 without leaving the observation region. The dotted (.....) region
corresponds to the interval (b0, a1). In this case, the trajectory γ(s) enters the
observation domain at s = a1−a and exits the observation region at s = a2−a.
Since (A∗, B∗) is final state observable in time τ > τ0, we need the length of
the characteristics to be greater than τ0 within the observation region. Thus,
we need τ > τ0 + a1 in order to observe q̃ at final time

Then, w satisfies

∂w

∂s
−A∗w = 0, s ∈ (τ + a− a2, τ). (49)

By applying Proposition 3.1 with T0 = τ0, T1 = τ + a− a2, T2 = τ + a− a1 and
T3 = τ we obtain that

‖w(τ)‖2X 6Meω(a1−a)C(a2 − a1)

∫ τ+a−a1

τ+a−a2

‖B∗w(s)‖2U ds.

In terms of q̃, the above inequality becomes
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‖q̃(τ, a)‖2X 6Meω(a1−a)C(a2 − a1)

∫ τ+a−a1

τ+a−a2

‖B∗q̃(s, a+ τ − s)‖2U ds

= Meω(a1−a)C(a2 − a1)

∫ a2

a1

‖B∗q̃(τ + a− s, s)‖2U ds.

Integrating with respect to a over (b0, a1) yields

∫ a1

b0

‖q̃(τ, a)‖2X da 6Meω(a1−b0)C(a2 − a1)

∫ a1

b0

∫ a2

a1

‖B∗q̃(τ + a− s, s)‖2U dsda

=Meω(a1−b0)C(a2 − a1)

∫ a2

a1

∫ a1

b0

‖B∗q̃(τ + a− s, s)‖2U dads

=Meω(a1−b0)C(a2 − a1)

∫ a2

a1

∫ τ+a1−s

τ+b0−s

‖B∗q̃(r, s)‖2U drds

6Meωa1C(a2 − a1)

∫ a2

a1

∫ τ

0

‖B∗q̃(r, s)‖2U drds

= Meωa1C(a2 − a1)

∫ τ

0

∫ a2

a1

‖B∗q̃(t, a)‖2U dadt. (50)

Therefore, by combining (48) and (50), we get
∫ a1

0

‖q̃(τ, a)‖2X da

6Meωa1 max
{
C(τ − a1), C(a2 − a1)

}∫ τ

0

∫ a2

a1

‖B∗q̃(t, a)‖2U da dt. (51)

Finally, using the above estimate and the definition of q̃ in (43), we obtain (41).
This completes the proof of the proposition. �

Next, we consider the system (34) with β = 0. More precisely, we consider
the system





∂z

∂t
−
∂z

∂a
−A∗z + µ(a)z = 0, (t, a) ∈ (0, τ)× (0, a†)

z(t, a†) = 0, t ∈ (0, τ)

z(0, a) = z0(a) a ∈ (0, a†).

(52)

Proposition 3.3 Let us assume the hypothesis of Theorem 3.1. Let

τ > τ0 and a1 < a0 < a2 − τ0.

Then, for every z0 ∈ D(A∗), the solution z of the system (52) verifies
∫ a0

a1

‖z(τ, a)‖2Xda

6MCµe
ωa1 max

{
C(τ), C(a2 − a0)

}∫ τ

0

∫ a2

a1

‖B∗z(t, a)‖2U da dt, (53)

where Cµ = e2‖µ‖L1[0,a0] .
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Proof The proof is similar to that of Proposition 3.2. Let us briefly explain
the main steps. We consider the case

τ < a2 − a1.

We split the interval (a1, a0) as (see Fig. 2)

(a1, a0) = (a1, a3) ∪ (a3, a0) where a3 = a2 − τ.

If τ > a2 − a1, then we choose a3 = a1. Then, we estimate
∫

I

‖z(τ, a)‖2Xda

where I is successively each of the intervals appearing in the above decomposi-
tion. These estimates are similar to the ones presented in Proposition 3.2, thus
are omitted here. �

Figure 2. In this case, the trajectory γ(s) = (τ − s, a + s) starts inside the
observation region. Thus, we just need τ > τ0 in order to apply final state
observability of the pair (A∗, B∗) along the characteristics

In the next proposition, we estimate q(t, 0). More precisely, we prove the
following:

Proposition 3.4 Let us assume the hypothesis of Theorem 3.1 and let τ >
τ0 + a1 and η ∈ (τ0 + a1, τ). Then, for every q0 ∈ D(A∗), the solution q of the
system (34) satisfies

∫ τ

η

‖q(t, 0)‖2X dt 6Meωa1C(η − a1)

∫ τ

0

∫ a2

a1

‖B∗q(t, a)‖2U dadt. (54)



248 D. Maity, M. Tucsnak and E. Zuazua

Proof First of all, without loss of generality we can assume that a2 6 ab
(otherwise we simply observe for small ages). Then, for all t > 0 and a ∈ (0, a2),
q satisfies the system (42). Let q̃ be defined as in (43). In particular, q̃ satisfies
(44). Here, we are also going to use Proposition 3.1 along the characteristics.
Without loss of generality, let us assume that

a2 6 ab and η < a2 < τ.

Case 1: For a.e. t ∈ (a2, τ), we define

w(s, x) = q̃(s, t− s), s ∈ (t− a2, t). (55)

Then, w satisfies

∂w

∂s
−A∗w = 0 s ∈ (t− a2, t), (56)

Using Proposition 3.1, with t0 = t− a2, t1 = t− a1 and T = t, we obtain

‖w(t)‖2X 6Meωa1C(a2 − a1)

∫ t−a1

t−a2

‖B∗w(s, x)‖2U ds.

In terms of q̃, the above inequality reads as

‖q̃(t, 0)‖2X 6

Meωa1C(a2 − a1)

∫ t−a1

t−a2

‖B∗q̃(s, t− s)‖2U ds

=Meωa1C(a2 − a1)

∫ a2

a1

‖B∗q̃(t− s, s)‖2U ds.

By integrating with respect to t over [a2, τ ], we obtain

∫ τ

a2

‖q̃(t, 0)‖2 dt 6Meωa1C(a2 − a1)

∫ τ

a2

∫ a2

a1

‖B∗q̃(t− s, s)‖2U dsdt

=Meωa1C(a2 − a1)

∫ a2

a1

∫ τ

a2

‖B∗q̃(t− s, s)‖2U dtds

=Meωa1C(a2 − a1)

∫ ab

a1

∫ τ−s

a2−s

‖B∗q̃(r, s)‖2U drds

6 Meωa1C(a2 − a1)

∫ τ

0

∫ a2

a1

‖B∗q̃(t, a)‖2U dxdadt. (57)

Case 2: For a.e. t ∈ (η, a2), we define

w(s) = q̃(s, t− s) s ∈ (0, t). (58)

Then, w satisfies

∂w

∂s
−A∗w = 0 s ∈ (0, t).
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Figure 3. An illustration of the estimate of q̃(t, 0). Here, we have chosen a2 = ab.
Since τ > τ0 + a1, all the backward characteristics starting from (t, 0) enter the
observation domain (the dashed region) and the length of the characteristics
within the observation region is greater than τ0

By applying Proposition 3.1, with t0 = 0, t1 = t− a1 and T = t, we obtain

‖w(t)‖2X 6Meωa1C(t− a1)

∫ t−a1

0

‖B∗w(s)‖2U ds.

This yields

‖q̃(t, 0)‖2X

6Meωa1C(t− a1)

∫ t−a1

0

‖B∗q̃(s, t− s)‖2U ds

=Meωa1C(t− a1)

∫ t

a1

‖B∗q̃(t− s, s)‖2U ds.

Integration with respect to t over [η, a2] yields

∫ a2

η

‖q̃(t, 0)‖2X dt

6Meωa1C(η − a1)

∫ a2

η

∫ t

a1

‖B∗q̃(t− s, s)‖2U dsdt

6Meωa1C(η − a1)

∫ a2

0

∫ t

a1

‖B∗q̃(t− s, s)‖2U dsdt
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=Meωa1C(η − a1)

∫ a2

a1

∫ a2

s

‖B∗q(t− s, s)‖2U dtds

=Meωa1C(η − a1)

∫ a2

a1

∫ a2−s

0

‖B∗q(r, s)‖2U drds

6 Meωa1C(η − a1)

∫ τ

0

∫ a2

a1

‖B∗q̃(t, a)‖2U dadt. (59)

By combining (57) and (59), we obtain
∫ τ

η

‖q̃(t, 0)‖2X dt 6Meωa1C(η − a1)

∫ τ

0

∫ a2

a1

‖B∗q̃(t, a)‖2U dadt.

Note that, from the definition of q̃ in (43), we have q̃(t, 0) = q(t, 0). Thus, from
the above estimate, we clearly obtain (54). �

3.2. Proof of the main result

We are now in a position to prove Theorem 3.1, thus, consequently, our main
result in Theorem 1.1.

Proof of Theorem 3.1 The constant Cτ , appearing in this proof, depends
only on τ, a†, µ, β, A and B. Let us set

δ = τ − (a1 + a† − a2 + 2τ0) and η = a1 + τ0 +
δ

2
.

Without loss of generality we can assume that τ is such that a1 < a2− τ0− δ/2.
(see Fig. 4). By Proposition 3.2, we already have that

∫ a1

0

‖q(τ, a)‖2X da 6 Cµe
ωa1C(τ0 + δ/2)

∫ τ

0

∫ a2

a1

‖B∗q(t, a)‖2U dadt. (60)

Thus, the rest of the proof is devoted to the estimate of
∫ a†

a1

‖q(τ, a)‖2X da.

With this in mind, let us define

qη(a) := q(η, a), a ∈ (0, a†) and V (t, a) := β(a)q(t, 0), t ∈ (η, τ), a ∈ (0, a†).

(61)

We write

q(t, a) = q1(t, a) + q2(t, a), t ∈ (η, τ), a ∈ (0, a†), (62)

where q1 solves




∂q1
∂t

−
∂q1
∂a

−A∗q1 + µ(a)q1 = 0, t ∈ (η, τ), a ∈ (0, a†),

q1(t, a†) = 0, t ∈ (η, τ),

q1(η, a) = qη(a), a ∈ (0, a†),

(63)
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and q2 solves





∂q2
∂t

−
∂q2
∂a

−A∗q2 + µ(a)q2 = V (t, a), t ∈ (η, τ), a ∈ (0, a†),

q2(t, a†) = 0, t ∈ (η, τ),

q2(η, a) = 0, a ∈ (0, a†).

(64)

Using Duhamel’s formula, we can write q2 as

q2(t, a) =

∫ t

η

T
0
t−sV (s, ·) ds, (65)

where T0 is the C0 semigroup defined in (31). Using (30) and Proposition 3.4
we get

∫ a†

a1

‖q2(τ, a)‖
2
X da

6 Cτ

∫ τ

η

‖q(t, 0)‖2X dt 6 CτC(τ0 + δ/2)

∫ τ

0

∫ a2

a1

‖B∗q(t, a)‖2U dadt. (66)

On the other hand, we write

∫ a†

a1

‖q1(τ, a)‖
2
X da =

∫ a2−τ0−δ/2

a1

‖q1(τ, a)‖
2
X da+

∫ a†

a2−τ0−δ/2

‖q1(τ, a)‖
2 da.

(67)

Figure 4.

From the semigroup representation of T0
t in (31), we have

q1(t, a) = 0 for t− η > a† − a. (68)
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In particular,

q1(τ, a) = 0 for a ∈ [a2 − τ0 − δ/2, a†].

Therefore,

∫ a†

a1

‖q1(τ, a)‖
2
X da =

∫ a2−τ0−δ/2

a1

‖q1(τ, a)‖
2
X da. (69)

Since τ − η > τ0, by applying Proposition 3.3 to q1 with a0 = a2 − τ0 − δ/2,
we obtain

∫ a2−τ0−δ/2

a1

‖q1(τ, a)‖
2
X da 6 CτC(τ0+δ/2)

∫ τ

η

∫ a2

a1

‖B∗q1(t, a)‖
2
U dadt. (70)

Using Lemma 2.3 and Proposition 3.4 we deduce that
∫ τ

η

∫ a2

a1

‖B∗q1(t, a)‖
2
U dadt

6 2

(∫ τ

η

∫ a2

a1

‖B∗q(t, a)‖2U dadt+

∫ τ

η

∫ a2

a1

‖B∗q2(t, a)‖
2
U dadt

)

6 Cτ

(∫ τ

η

∫ a2

a1

‖B∗q(t, a)‖2U dadt+

∫ τ

η

‖q(t, 0)‖2X dt

)

6 Cτ (1 + C(τ0 + δ/2))

∫ τ

η

∫ a2

a1

‖B∗q(t, a)‖2U dadt.

Combining the above estimate together with (69) and (70), we obtain
∫ a†

a1

‖q1(τ, a)‖
2
X da 6 Cτ (1 + C(τ0 + δ/2))

2
∫ τ

0

∫ a2

a1

‖B∗q(t, a)‖2U dadt. (71)

The above estimate, together with (62) and (3.2), yields
∫ a†

a1

‖q(τ, a)‖2X da

6 Cτ

(
(1 + C(τ0 + δ/2))2 + C(τ0 + δ/2)

) ∫ τ

0

∫ a2

a1

‖B∗q(t, a)‖2U dadt. (72)

Finally, combining the above estimate with (60) we obtain (37), with

κ2τ = Cτ

[
2 + C

(
τ − (a1 + a† − a2)

2

)]2
. (73)

This completes the proof of the theorem. �

4. Applications

The aim of this section is to apply the controllability result obtained in Theorem
1.1 for different classes of operators A and B.
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4.1. Finite dimensional diffusion

Let us take X = Rn and U = Rm with m 6 n. Let A be a real n × n matrix
and B be a real n×m matrix. Let us assume that

rank[B,AB, . . . An−1B] = n. (74)

In particular, we assume that the pair (A,B) is null-controllable for arbitrary
time (i.e. τ0 = 0). Then, by Theorem 1.1, the system (6) is null controllable in
time τ > a1 + a† − a2.

A Special Case: Let us choose:

n = m = 1, A = 0 and B = 1,

i.e., we consider the classical diffusion free Lotka-McKendrick system. This sys-
tem has already been studied in Barbu, Ianelli and Martcheva (2001); Hegoburu,
Magal and Tucsnak (2018); Maity (2019), as well as Hegoburu and Aniţa (2019).
By applying Theorem 1.1 to this particular case, we recover the result obtained
in Hegoburu and Aniţa (2019, Theorem 1.1) (see also Hegoburu, Magal and
Tucsnak, 2018; Maity, 2019).

4.2. Transport equation with age structure

Let Ω = (0, L). We consider the following control problem




∂p

∂t
+
∂p

∂a
+

∂

∂x
(v(x)p) + µ(a)p = 0, (t, a, x) ∈ (0, τ)× (0, a†)× Ω,

p(t, a, 0) = 1(a1,a2)u(t, a), (t, a) ∈ (0, τ)× (0, a†),

p(t, 0, x) =

∫ a†

0

β(a)p(t, a, x) da, (t, x) ∈ (0, τ)× Ω,

p(0, a, x) = p0(a, x) (a, x) ∈ ×(0, a†)× Ω,

(75)

where v ∈ C1[0, L] and v(x) > v̄ > 0. We take X = L2(Ω) and U = R. The
operator A is defined by

D(A) =
{
ϕ ∈ H1(0, L) | ϕ(0) = 0

}
, Aϕ = −

∂

∂x
(vϕ).

The control operator B is defined by

Bu = uδ0,

where δ0 is the Dirac mass at 0. It is well known that the pair (A,B) is null

controllable in time τ >
L

v̄
. Therefore, in order to apply Theorem 1.1, we choose

L or v such that

L

v̄
< min{a2 − a1, ab − a1}. (76)

Thus, the system (75) is null controllable in time τ > a† + a1 − a2 +
2L

v̄
.
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4.3. Population dynamics models with spatial diffusion

Let Ω be a smooth bounded domain in R3. Let us set X = L2(Ω). We consider
the Lotka-McKendrick system with spatial diffusion. For (t, a, x) ∈ (0, τ) ×
(0, a†) × Ω, let p(t, a, x) be the distribution density of individuals with respect
to age a > 0 and spatial position x ∈ Ω at some time t > 0. The control problem
we consider is:






∂p

∂t
+
∂p

∂a
−∆p+ µ(a)p = d11(a1,a2)1Ou1, (t, a, x) ∈ (0, τ)× (0, a†)× Ω

∂p

∂n
= d21(a1,a2)1Γu2, (t, a, x) ∈ (0, τ)× (0, a†)× ∂Ω

p(t, 0, x) =

∫ a†

0

β(a)p(t, a, x) da, (t, x) ∈ (0, τ)× Ω,

p(0, a, x) = p0(a, x) (a, x) ∈ (0, a†)× Ω,

(77)

where O ⊂ Ω and Γ ⊂ ∂Ω.

4.3.1. Interior control

We consider the case of d2 = 0. In this case, we have

A = ∆, D(A) =

{
ϕ ∈ H2(Ω) |

∂ϕ

∂n
= 0

}
, (78)

and

B = 1O. (79)

It is well known that the pair (A,B) is null controllable in arbitrary time,
where A and B are defined as in (78) and (79), respectively (see, for instance,
Fursikov and Imanuvilov, 1996). Therefore, by Theorem 1.1 the system (77) is
null controllable in time τ > a1 + a† − a2 by interior controls u1 ∈ L2((0, τ) ×
(0, a†) × Ω). This result was already obtained in Maity, Tucsnak and Zuazua
(2019).

4.3.2. Boundary control with respect to the spatial variable

We consider the case of d1 = 0. In this case

B∗w = 1Γw, w ∈ D(A).

It is well known that (A∗, B∗) is the final state observable for any time,
Seidman (1976). Thus, by applying Theorem 1.1, with τ0 = 0, we get that
the system (77) is null controllable in time τ > a1 + a† − a2 by controls u2 ∈
L2((0, τ)× (0, a†)× Γ).
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4.4. Population dynamics models with degenerate diffusion

Let Ω = (0, 1) and O = (ℓ1, ℓ2) ⊂ Ω. We consider the following age structured
model with degenerate diffusion:






∂p

∂t
+
∂p

∂a
− k(x)

∂2p

∂x2
+ µ(a)p = 1(a1,a2)1Ou, (t, a, x) ∈ (0, τ)× (0, a†)× Ω

p(t, a, 0) = p(t, a, 1) = 0, (t, a) ∈ (0, τ)× (0, a†),

p(t, 0, x) =

∫ a†

0

β(a)p(t, a, x) da, (t, x) ∈ (0, τ)× Ω,

p(0, a, x) = p0(a, x) (a, x) ∈ (0, a†)× Ω,

(80)

where k is a non-negative continuous function in [0, 1] and degenerate at the
boundary, i.e.

k(0) = k(1) = 0. (81)

Let us set the state and the control space as follows:

X = L2
1/k(0, 1) =

{
ϕ ∈ L2(0, 1) |

∫ 1

0

ϕ2

k
dx <∞

}
and U = L2(0, 1). (82)

We consider the unbounded operator A on X defined by

D(A) =
{
ϕ ∈ L2

1/k(0, 1) ∩H
1
0 (0, 1) | k∂xxϕ ∈ L2

1/k(0, 1)
}

and Aϕ = k∂xxϕ.

The operator B is defined by B = 1O. By Cannarsa, Fragnelli and Rocchetti
(2008, Theorem 2.3), the operator A generates a C0-semigroup on X. We now
make several assumptions on the degenerate coefficient k so that the pair (A,B)
is null controllable. Following Cannarsa, Fragnelli and Rocchetti (2008), we
make the following assumptions on k: The function k ∈ C0[0, 1] ∩ C3(0, 1) is
such that it satisfies (81) and k > 0 in (0, 1). Moreover, there exist ε ∈ (0, 1)
such that

1) The function
x∂xk

k
∈ L∞(0, ε) and there exists M1 ∈ (0, 2) and C1 > 0

such that
x∂xk

k
6M1 and

∣∣∣∣∂xx
(
x∂xk

k

)∣∣∣∣ 6 C1
1

k(x)
for all x ∈ (0, ε);

2) The function
(x − 1)∂xk

k
∈ L∞(1 − ε, 1) and there exist M2 ∈ (0, 2) and

C2 > 0 such that
(x− 1)∂xk

k
6 M2 and

∣∣∣∣∂xx
(
(x − 1)∂xk

k

)∣∣∣∣ 6 C2
1

k(x)
for all x ∈ (1− ε, 1).

Under the above assumptions, by Cannarsa, Fragnelli and Rocchetti (2008,
Theorem 4.5) the pair (A,B) is null controllable in any time. Therefore, by
Theorem 1.1, the system (80) is null controllable in time τ > a† + a1 − a2.



256 D. Maity, M. Tucsnak and E. Zuazua

Remark 4.1 Let us make the following remarks:

• Recently, similar controllability result for the system (80) was proven in
Fragnelli (2018). Our result can be seen as an improvement of the above
mentioned result, as we are able to tackle the case of a control, which
is active for small ages and we show that our global controllability result
applies to individuals of all ages, without the need to exclude ages in a
neighbourhood of zero.

• Our method also applies to the case, in which the spatial variable is mul-
tidimensional. Of course, we need to make suitable assumptions on de-
generacy. For instance, we can consider the case studied by Cannarsa,
Martinez and Vancostenoble (2009, 2016). More precisely, let Ω be a
smooth bounded domain in R2. The operator A is defined by

Aϕ = div (M(x)∇ϕ) ,

with appropriate boundary conditions. The control operator B is defined
by B = 1O, where O ⊂ Ω. Under suitable assumptions on the degenerate
matrix M(x), the pair (A,B) is null controllable in arbitrary time (see,
for instance, Cannarsa, Martinez and Vancostonoble, 2009). Thus, the
corresponding age structured model is also null controllable in time τ >
a1 + a† − a2.

4.5. Fractional diffusion equation with age structure

Let X = L2(Ω) and let A := (−∆D)α or A := (−∆N )α, where −∆D and −∆N

are the Dirichlet and the Neumann Laplacian in Ω and α > 1/2. LetB be defined
by (79). Then, (A,B) is null controllable in any time (see, for instance, Micu
and Zuazua, 2006; Miller, 2006; Tenenbaum and Tucsnak, 2011). Therefore,
the conclusion of Theorem 1.1 also holds with the above choice of (A,B).

4.6. Schrödinger equation with age structure

Let Ω be a square in R
2, and we consider the Schrödinger operator as diffusion

operator. More precisely, we take X = L2(Ω)

A = −i∆, D(A) = H2(Ω) ∩H1
0 (Ω).

Let B be defined by (79). Then, the pair (A,B) is null controllable in any time
(see Jaffard, 1988). Thus, the conclusion of Theorem 1.1 holds with τ0 = 0.

Alternatively, we can take Ω to be a unit disc in R2 and O ⊂ Ω to be an open
set, such that O ∩ ∂Ω 6= ∅. The operators A and B are defined as above. The
pair (A,B) is null controllable in any time, which was proven in Anantharaman,
Léautand and Maciá (2016, Theorem 1.2). Therefore, Theorem 1.1 also holds
in this setup.
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5. Controllability with regular controls

In Theorem 1.1, we have shown that the age structured system (6) is null con-
trollable by controls u ∈ L2((0, τ) × (0, a†);U). However, in many practical
applications, we may need to choose controls in more regular spaces. For in-
stance, while proving positivity of the controlled trajectory of the system (77)
one needs to choose control u1 ∈ L∞((0, τ) × (0, a†) × Ω) (see Maity, Tucsnak
and Zuazua, 2019, Theorem 4.6). The aim of this section is to show that null
controllability by “smooth” controls of the pair (A,B) is also inherited by the
pair (A,B).

To this aim, let us fix s ∈ N ∪ {0} and a Hilbert space V , so that V →֒ U.
Following Pighin and Zuazua (2018) we introduce the notion of smooth control-
lability.

Definition 5.1 We say that a pair (A,B) is smoothly null controllable in time
τ, if for every z0 ∈ D(As) there exists a control u ∈ L∞(0, τ, V ) such that the
solution of the system

ż(t) = Az(t) +Bu(t) t ∈ [0, τ ], z(0) = z0

satisfies z(τ) = 0.

The smooth controllability property of the system (6) can be stated as fol-
lows:

Theorem 5.1 Let us assume the hypothesis of Theorem 1.1. Let us also assume
that the pair (A,B) is smoothly null controllable in any time τ > τ0, with

0 6 τ0 < τ, τ = min{a2 − a1, ab − a1}. (83)

Then, for every τ > a1 + a† − a2 + 2τ0 and for every p0 ∈ L∞(0, a†;D(As))
there exists a control v ∈ L∞((0, τ)× (0, a†)×V ) such that the solution p of (6)
satisfies

p(τ, a) = 0 for all a ∈ (0, a†). (84)

The proof the above theorem is a consequence of a suitable observability in-
equality. Let us briefly describe the main steps. The principal idea is the same,
i.e., to use observability property of the pair (A,B) along the characteristics.
The smooth controllability in time τ of the pair (A,B) is equivalent to the fol-
lowing final state observability inequality (see, for instance, Pighin and Zuazua,
2018, Section 2): there exists a constant kτ > 0 such that for any z0 ∈ D(A∗)

‖S∗τz0‖D(As)∗ 6 kτ

∫ τ

0

‖i∗B∗
S
∗
t z0‖V ∗dt, (85)

where D(As)∗ and V ∗ are the duals of D(As)∗ and V respectively, with respect
to the pivot spaces X and U and i : V → U is the inclusion map. By applying
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the above observability property of the pair (A,B) along the characteristics one
can prove that: for every τ > a1 + a† − a2 + 2τ0 and q0 ∈ D(A∗), the solution
q of (34) satisfies

∫ a†

0

‖q(τ, a)‖D(As)∗ da 6 κ2τ

∫ τ

0

∫ a2

a1

‖i∗B∗q(t, a)‖V ∗ dadt. (86)

Next, using the classical duality argument (see, for instance, Maity, Tucsnak and
Zuazua, 2019, Theorem 4.6, or Micu, Roventa and Tucsnak, 2012, Proposition
2.5) we can easily prove Theorem 5.1.
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sures and observability for the Schrödinger equation on the disk. Inven-
tiones Mathematicae, 206(2): 485–599.

Barbu, V., Iannelli, M. and Martcheva, M. (2001) On the controllability
of the Lotka-McKendrick model of population dynamics. J. Math. Anal.
Appl., 253(1): 142–165.



Controllability of a class of infinite dimensional systems with age structure 259

Boutaayamou, I. and Echarroudi, Y. (2017) Null controllability of
a population dynamics with interior degeneracy. arXiv preprint
arXiv:1704.00936.

Brikci, F. B., Clairambault, J., Ribba, B. and Perthame, B. (2008) An
age-and-cyclin-structured cell population model for healthy and tumoral
tissues. Journal of Mathematical Biology, 57(1): 91–110.

Cannarsa, P., Fragnelli, G. and Rocchetti, D.(2008) Controllability
results for a class of one-dimensional degenerate parabolic problems in
nondivergence form. J. Evol. Equ., 8(4): 583–616.

Cannarsa, P., Martinez, P. and Vancostenoble, J. (2009) Carleman
estimates and null controllability for boundary-degenerate parabolic op-
erators. Comptes Rendus Mathematique, 347: 147–152.

Cannarsa, P., Martinez, P. and Vancostenoble, J. (2016) Global Car-
leman Estimates for Degenerate Parabolic Operators with Applications,
239. American Mathematical Society.

Curtain, R. F. and Weiss, G. (1989) Well posedness of triples of operators
(in the sense of linear systems theory). In: Control and Estimation of
Distributed Parameter Systems (Vorau, 1988), Internat. Ser. Numer.
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