PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The effect of gluconic acid secretion by phosphate-solubilizing Pseudomonas putida bacteria on dissolution of pyromorphite Pb5(PO4)3Cl and Pb remobilization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this study was to investigate the effect of bacterially produced gluconic acid on the dissolution of pyromorphite and Pb remobilization. Pyromorphite Pb5(PO4)3Cl is formed as a product of the phosphate-induced treatment of Pb-contaminated sites. This very stable mineral greatly decreases the bioavailability of Pb. In this study, bacterial and abiotic batch experiments on the dissolution of pyromorphite were carried out. In the microbial experiments, the mineral was dissolved in the presence of the phosphate–solubilizing soil bacterium, Pseudomonas putida. The bacterial growth medium was supplemented with glucose, which under natural condi- tions can be supplied to microbes via symbiosis with plants. P. putida acquired P from pyromorphite and enhanced its dissolution. Elevated Pb concentrations were observed in the suspensions with bacteria. The bacterial secretion of 16.5 mM gluconic acid played a significant role in Pb remobilization; the pH of the solution dropped down from an initial 7.4 to 3.5. In the abiotic experiments, pyromorphite was dissolved at several concentrations of gluconic acid and at an acidic to neutral pH range. Both acidification and formation of stable Pb-gluconate ligands enhanced the dissolution of pyromorphite and caused Pb remobilization.
Rocznik
Strony
343--351
Opis fizyczny
Bibliogr. 58 poz., rys., tab., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Department of Mineralogy, Petrography and Geochemistry, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa Str. 7, 30-387 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Department of Mineralogy, Petrography and Geochemistry, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Department of Mineralogy, Petrography and Geochemistry, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, D-09596 Freiberg, Germany
autor
  • Institute of Geology, TU Bergakademie Freiberg, Gustav Zeuner Str. 12, D-09596 Freiberg, Germany
Bibliografia
  • 1. Bajda, T., 2010. Solubility of mimetite Pb5(AsO4)3Cl at 5-55°C. Environmental Chemistry, 7: 268-278.
  • 2. Bajda, T., 2011. Dissotution of mimetite Pb5(AsO4)3Cl in low- molecular-weight organic acids and EDTA. Chemosphere, 83: 1493-1501.
  • 3. Baker, W. E., 1966 An X-ray diffraction study of synthetic members of the pyromorphite series. American Mineralogists, 51: 1712-1721.
  • 4. Banfield, J. F., Baker, W. W., Welch, S. A. & Tauton A., 1999. Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proceedings of the National Academy of Sciences of the United States of America, 96: 3404-3411.
  • 5. Buch, A., Archana, G. & Kumar, G. N., 2008. Metabolic channeling of glucose towards gluconate in phosphate-solubilizing Pseudomonas aeruginosa P4 under phosphorus deficiency. Research in Microbiology, 159: 635-642.
  • 6. Cotter-Howells, J., 1996. Lead phosphate formation in soils. Environmental Pollution, 93: 9-16.
  • 7. Cotter-Howells, J. & Caporn, S., 1996. Remediation of contamtnated land by formation of heavy metal phosphates. Applied Geochemistry, 11: 335-342.
  • 8. Crundwell, F. K., 2003. How do bacteria interact with minerals? Hydrometalurgy, 71: 75-81.
  • 9. Debela, F., Arocena, J. M., Thring, R. W. & Withcombe, T., 2010. Organic acid-induced release of lead from pyromorphite and its relevance to reclamation of Pb-contaminated soils. Chemosphere, 80: 450-456.
  • 10. Debela, F., Arocena, J. M., Thring, R. W. & Withcombe, T., 2013. Organic acids inhibit the formation of pyromorphite and Zn- phosphate in phosphorous amended Pb- and Zn-contaminated soil. Journal of Environmental Management, 116: 156-162.
  • 11. Dehner, C. A., Barton, L., Maurice, P. A. & DuBois, J. L., 2010. Size-dependent bioavailability of hematite (a-Fe2O3) nanoparticles to a common aerobic bacterium. Environmental Science and Technology, 45: 977-983.
  • 12. Drever, J. I. & Stillings, L. L., 1997. The role of organic acids in mineral weathering. ColloidsSurface A 120: 167-181.
  • 13. Dhar, R. K., Zheng, Y., Rubenstone, J. & van Geen, A., 2004. A rapid colorimetric method for measuring arsenic concentrations in groundwater. Analytica ChimicaActa, 526: 203-209.
  • 14. Escandar, G. M., Peregrin, J. M., Sierra, M. G., Martino, D., Santoro, M., Frutos A. A., Garcia, S. I., Labadie, G. & Sala, L. F., 1996. Interaction of divatent metal ions with D-gluconic acid in the solid phase and aqueous sotution. Polyhedron, 15: 2251-2261.
  • 15. Espinosa-Urgel, M., Kolter, R. & Ramos, J. L., 2002. Root colonization by Pseudomonas putida: love at first sight. Microbiology, 148: 341-343.
  • 16. Flis, J., Borkiewicz, O., Bajda, T., Manecki, M. & Klasa, J., 2010. Synchrotron-based X-ray diffraction of the lead apatite series Pb15(PO4)6Cl2 - Pb10(AsO4)6Cl2. Journal of Synchrotron Radiation, 17: 207-214.
  • 17. Flis, J., Manecki, M. & Bajda, T., 2011. Solubiltty of pyromorphite Pb5(PO4)3Cl - mimetite Pbs(AsO4)3Cl solid sotution series. Geochimica et Cosmochimica Acta, 75: 1858-1868.
  • 18. Formina, M., Alexander, I. J., Hillter, S. & Gadd, G. M., 2004. Zinc phosphate and pyromorphite solubilization by soil plantsymbiotic fungi. Geomicrobiology Journal, 21: 351-366.
  • 19. Gadd, G. M., 2004. Microbial influence on metal mobility and application for bioremediation. Geoderma, 122: 109-119.
  • 20. Hashimoto, Y. M., Takaoka, M., Oshita, K. & Tanida, H, 2009. In- complete transformations of Pb to pyromorphite by phosphate-induced immobilization investigated by X-ray absorption fine structure (XAFS) spectroscopy. Chemosphere, 76: 616-622.
  • 21. Illmer, P. & Schinner, F., 1995. Solubilization of inorganic calcium phosphates-solubilization mechanisms. Soil Biology and Biochemistry, 27: 257-263.
  • 22. Jarosz-Wilkolazka, A. & Gadd, G. F., 2003. Oxal ate product ion by wood-rotting fungi growing in toxic metal-amended medium. Chemosphere, 52: 541-547.
  • 23. Jones, D. L., 1998. Organic acids in the rhizosphere - a critical review. Plant Soil, 205: 25-44.
  • 24. Jones, D. L., Dennis, P. G., Owen, A. G. & van Hees, P. A. W., 2003. Organic acid behavior in soils-misconceptions and knowledge gaps. Plant Soil, 248: 31-41.
  • 25. Lang, F. & Kaupenjohann, M., 2003. Effect of dissolved organic matter on precipitation and mobility of lead compound chloropyromorphite in sotution. European Journal of Soil Science, 54: 139-148.
  • 26. Leung, W. C., Chua, H. & Lo, W., 2001. Biosorption of heavy metals by bacteria isolated from activated sludge. Applied Biochemistry and Biotechnology, 91-93: 171-184.
  • 27. Lin, T., Huang, H., Shen, F. & Young, C., 2006. The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC- A174. Bioresource Technology, 97: 957-960.
  • 28. Ma, Q. Y., Traina, S. J., Logan, T. J., Ryan, J. A., 1993. In-situ lead immobilization by apatite. Environmental Science and Technology, 27: 1803-1810.
  • 29. Ma, Q. Y., Traina, S. J., Logan, T. J. & Ryan, J. A., 1994a. Effects of aqueous Al, Cd, Cu, Fe(II), Ni, and Zn on Pb immobilization by hydroxyapatite. Environmental Science and Technology, 28: 1219-1228.
  • 30. Ma, Q. Y., Traina, S. J., Logan, T. J. & Ryan, J. A., 1994b. Effects of NO3-, Cl", F", SO42", and CO32" on Pb2+ immobilization by hydroxyapatite. Environmental Science and Technology, 28: 408-418.
  • 31. Ma, Q. I., Logan, T. J. & Traina, S. J., 1995. Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks. Environmental Science and Technology, 29: 1118-1126.
  • 32. Manecki, M., 2009. Rola i dynamika przemian piromorfitu Pb5(PO4)3Cl w środowisku. Rozprawy i Monografie, 176, 91 pp. UWND AGH, Kraków, [In Polish].
  • 33. Manecki, M. & Maurice, P. A., 2008. Siderophore promoted dissolution of pyromorphite. Soil Science, 173: 821-830.
  • 34. Manecki, M., Bogucka, A., Bajda, T. & Borkiewicz, O., 2006. De- crease of Pb bioavailability in soils by addition of phosphate ions. Environmental Chemistry Letters, 3: 178-181.
  • 35. Matlakowska, R., Drewniak, L. & Sklodowska, A., 2008. Arsenic-hypertolerant Pseudomonas isolated from ancient gold and copper-bearing black shale deposits. Geomicrobiology Journal, 25: 357-362.
  • 36. Nakamoto, A., Urasima, Z., Sugiura, S., Nakano, H., Yachi, T. & Tadokoro, K., 1969. Pyromorphite-mimetite minerals from the Otaru-Matsukura barite mine in Hokkaido, Japan. Mineralogical Journal, 6: 85-101.
  • 37. Nautiyal, C. S., 1999. An efficient mirobiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 170: 265-270.
  • 38. Park, J. H., Bolan, N., Megharaj, M. & Naidu, R., 2011a. Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. Journal of Hazardous Material, 185: 829-836.
  • 39. Park, J. H., Bolan, N., Merharaj, M. & Naidu, R. 2011b. Comparative value of phosphate sources on the immobilization of lead and leaching of lead and phosphorus in lead coniaminated soils. Science of the Total Environment, 409: 853-860.
  • 40. Ramos, J. L., Duque, E., Rodriguez-Herva, J. J., Godoy, P., Haidour, A., Reyes, F. & Fernandez-Barrero A., 1997. Mechanisms for solvent tolerance in bacteria. Journal of Biological Chemistry, 272: 3887-3890.
  • 41. Reva, O. N., Weinel, Ch., Weinel, M., Böhm, K., Stjepandic, D., Hoheisel, J. D. & Burkhard, T., 2006. Functional genomics of stress response in Pseudomonas putida KT2440. Journal of Bacteriology, 188: 4079-4092.
  • 42. Roane, T. M., 1999. Lead resistance in two bacterial isolates from heavy metal-contaminated soils. Microbial Ecology, 37: 218-224.
  • 43. Rodriguez, H. & Fraga, R., 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17: 319-339.
  • 44. Rosas, S. B., Andres, J. A., Rovera, M. & Correa, N. S., 2006.
  • 45. Phosphate-solubilizing Pseudomonas putida can influence the rhizobia-legume symbiosis. Soil Biology and Biochemistry, 38: 3502-3505.
  • 46. Ruby, M. V., Davis, A. & Nicholson, A.,1994. In situ formation of lead phosphates in soil as a method to immobilize lead. Environmental Science and Technology, 28: 646-654.
  • 47. Rugierro, Ch. E., Boukhalfa, H., Forsythe, J. H., Lack, J. G., Hersman, L. E. & Neu, M. P., 2005. Actinide and metal toxicity to prospective bioremediation bacteria. Environmental Microbiology, 7: 88-97.
  • 48. Sayer, J. A., Kierans, M. & Geoffrey, M. G., 1997. Solubilization of some naturally occurring metal-bearing minerals lime scale and lead phosphate by Asperigillus niger. FEMS Micro- biology Letters, 154: 29-35.
  • 49. Scheckel, K. G. & Ryan, J. A., 2002. Effect of aging and pH on dissolution kinetics and stability of chloropyromorphite. Environmental Science and Technology, 36: 2198-2204.
  • 50. Shen, Y., Storm, L., Johnson, J. & Tyler, G., 1996. Low-molecular organic acids in the rhizosphere soil solution of beech forest cambisols determined by chromatography using supported liquid membrane enrichment technique. Soil Biology and Biochemistry, 28: 1163-1169.
  • 51. Strobel, B. W., 2001. Influence of vegeiation on low-molecular-weight carboxylic acids in soil solution - a review. Geoderma, 99: 169-198.
  • 52. Topolska, J., Latowski, D., Kaschabek, S., Manecki, M., Merkel, B. & Rakovan, J., 2014. Pb remobilization by bacterially mediated dissolution of pyromorphite Pbs(PO4)3Cl in presence of phosphate-solubilizing Pseudomonas putida. Environmental Science and Pollution Research, 21: 1079-1089.
  • 53. Traina, S. J. & Laperche, V., 1999. Contaminant bioavailability in soils, sediments and aquatic environments. In: Smith, J. V. (ed.), Colloquium on Geology, Mineralogy, and Human Wel- fare. Proceedings of the National Academy of Sciences, 96: 3365-3371.
  • 54. United States Environmental Protection Agency, 2005. Best management practices for lead at outdoor shooting ranges. EPA- 902-B-01-00, revised June 2005. Diviiion of Eniorcement and Compliance Assistance, RCRA Compliance Branch, New York, New York 10007-1866, 103 pp. http://www2.epa. gov/lead/best-management-practices-lead-outdoor-shoot- ing-ranges-epa-902-b-01-001-revised-june-2005 [05.02.2011]
  • 55. Vicedomini, M., 1983. Potentiometric invesiigaiion of the copper(II)-gluconate system in acid solution. Journal of Coordination Chemistry, 12: 307-312.
  • 56. Vyas, P. & Gulati, A., 2009. Organic acid production in vitro and plant growth promotion in maize under conirolled environment by phosphate-solubilizing fluorescent Pseudomonas. BMCMicrobiolology, 9: 174-189.
  • 57. Welch, S. A. & Ullman, W. J., 1996. Feldspar dissolution in acidic and organic solutions: Compositional and pH dependence of dissolution rates. Geochimica et Cosmochimica Acta, 60: 2939-2948.
  • 58. Xie, L. & Giammar, D., 2007. Equilibrium solubility and dissolution rate of the lead phosphate chloropyromorphite. Environmental Science and Technology, 41: 8050-8055.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2f71cdd-dd67-4957-914b-44d5165fad78
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.