PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Li-S battery recycling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Lithium-ion batteries are not situable for electric vehicles with high millage, military power supplies and fixed power networks. Therefore, the Li-S batteries have been intensively investigated, due to the high capacity, low cost, widespread source, and nontoxicity. The development of Li-S batteries causes increasing need to find the methods for their recycling. Some of them are discussed in the paper. The recycling of Li-S cell relates to its anode, cathode, electrolyte, binder and separator. The Li-S battery should be fully charged before recycling. There are potential methods for recycling of lithium from anodes, especially by re-melting. It is also possible to recycle some materials from the cathodes, especially sulfur by re-melting and graphite by dry crushing, Eco-bat Technologies method or the method investigated by Xiang et al. There is no effective recycling methods for electrolytes, binders and separators. It is necessary to carry out further studies on them.
Słowa kluczowe
Rocznik
Strony
125--135
Opis fizyczny
Bibliogr. 75 poz., rys.
Twórcy
  • Department of Vehicles and Fundamentals of Machine Design, Lodz University of Technology, Lodz, 90-537, Poland
Bibliografia
  • 1. Ahn H.J., Kim K.W., Ahn J.H. & Cheruvally G. (2010) Secondary Batteries - Lithium rechargeable systems: Lithium-sulfur, Encyclopedia of Electrochemical Power Sources, Elsevier.
  • 2. Azimi N., Xue Z., Bloom I., Gordin M.L., Wang D., Daniel T., Takoudis C. & Zhang Z. (2015) Understanding the effect of a fluorinated ether on 186 the performance of lithium-sulfur batteries, ACS Applied Materials & Interfaces, Vol. 7, no. 17, pp. 9169-9177.
  • 3. Azimi N., Xue Z., Rago N.D., Takoudis C., Gordin M.L., Song J., Wang D. & Zhang Z. (2015) Fluorinated electrolytes for Li-S battery: Suppressing the self-discharge with an electrolyte containing fluoroether solvent, Journal of the Electrochemical Society, Vol. 162, no. 1, pp. A64-A68.
  • 4. Bai S., Liu X., Zhu K., Wu S. & Zhou H. (2016) Metal-organic framework-based separator for lithium-sulfur batteries, Nat. Energy, Vol. 1, pp. 16094.
  • 5. Barchasz C., Lepretre J.C., Patoux S. & Alloin F. (2013) Electrochemical properties of ether-based electrolytes for lithium/sulfur rechargeable batteries, Electrochim. Acta, Vol. 89, pp. 737-743.
  • 6. Barghamadi M., Kapoor A. & Wen C. (2013) A review on Li-S batteries as a high efficiency rechargeable lithium battery, Journal of The Electrochemical Society, Vol. 160, pp. A1256-A1263.
  • 7. Bresser D., Passerini S. & Scrosati B. (2013) Recent progress and remaining challenges in sulfur-based lithium secondary batteries - a review, Chemical Communications (Camb.), Vol. 49, pp. 10545-10562.
  • 8. Bruce P.G., Freunberger S.A., Hardwick L.J. & Tarascon J.M. (2012) Li-O2 and Li-S batteries with high energy storage, Nat. Mater., Vol. 11, pp. 19-29.
  • 9. Cha E., Patel M.D., Park J., Hwang J., Prasad V., Cho K. & Choi W. (2018) 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries, Nature Nanotechnology, Vol. 13, pp. 337-344.
  • 10. Chang C.-H., Chung S.-H. & Manthiram A. (2016) Effective Stabilization of a High- Loading Sulfur Cathode and a Lithium-Metal Anode in Li-S Batteries Utilizing SWCNT-Modulated Separators, Small, Vol. 12, Issue 2, pp. 174-179.
  • 11. Chen H.W., Wang C., Dai Y., Qiu S., Yang J., Lu W. & Chen L. (2015) Rational design of cathode structure for high rate performance lithium-sulfur batteries, Nano Lett., Vol. 15, pp. 5443-5448.
  • 12. Chen L. & Shaw L.L. (2014) Recent advances in lithium-sulfur batteries. Journal of Power Sources, Vol. 267, pp. 770-783.
  • 13. Chen Y., Liu N., Shao H., Wang W., Gao M., Li C., Zhang H., Wang A. & Huang Y. (2015) Chitosan as a functional additive for high-performance lithium-sulfur batteries, Journal of Materials Chemistry A, Vol. 3, no. 29, pp. 15235-15240.
  • 14. Cheng X.-B., Huang J.-Q. & Zhang Q. (2018) Review - Li Metal Anode in Working Lithium-Sulfur Batteries, Journal of The Electrochemical Society, Vol. 165, no 1, pp. A6058-A6072.
  • 15. Cheng X.-B., Peng H.-J., Huang J.-Q., Wei F. & Zhang Q. (2014) Dendrite-free nanostructured anode: entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries, Small, Vol. 10, pp. 4257-4263.
  • 16. Duan X., Han Y., Li Y. & Chen Y. (2014) Improved capacity retention of low cost sulfur cathodes enabled by a novel starch binder derived from food, RSC Advances, Vol. 4, no. 105, pp. 60995-61000.
  • 17. Ellis B.L., Lee K.T. & Nazar L.F. (2010) Positive electrode materials for Li-ion and Libatteries, Chemistry of Materials, Vol. 22, pp. 691-714.
  • 18. Etacheri V., Marom R., Elazari R., Salitra G. & Aurbach D. (2011) Challenges in the development of advanced Li-ion batteries: a review, Energy & Environmental Science, Vol. 4, pp. 3243.
  • 19. Evers S. & Nazar L.F. (2013) New approaches for high energy density lithium-sulfur battery cathodes, Accounts of Chemical Research, Vol. 46, pp. 1135-1143.
  • 20. Frischmann P.D., Hwa Y., Cairns E.J. & Helms B.A. (2016) Redox-Active Supramolecular Polymer Binders for Lithium-Sulfur Batteries That Adapt Their Transport Properties in Operando, Chem. Mater., Vol. 28, pp. 7414-7421.
  • 21. Gaines L., Sullivan J., Burnham A. & Belharouak I. (2011) Life-cycle analysis for lithiumion battery production and recycling. In: Transportation Research Board 90th Annual Meeting Washington, DC, January 23-27, 2011.
  • 22. Goodenough J.B. & Kim Y. (2010) Challenges for rechargeable Li batteries, Chemistry of Materials, Vol. 22, pp. 587-603.
  • 23. Han F., Yue J., Fan X., Gao T., Luo C., Ma Z., Suo L. & Wang C. (2016) High- Performance All-Solid-State Lithium-Sulfur Battery Enabled by a Mixed-Conductive Li2S Nanocomposite, Nano Lett., Vol. 16, pp. 4521-4527.
  • 24. Huang J.-Q., Zhang Q., Peng H.-J., Liu X.-Y., Qian W.-Z. & Wei F. (2014) Ionic shield for polysulfides towards highly-stable lithium-sulfur batteries, Energy & Environmental Science, Vol. 7, no. 1, pp. 347-353.
  • 25. Idris N.H., Rahman M.M., Wang J.Z. & Liu H.K. (2012) Microporous gel polimer electrolytes for lithium rechargeable battery application, J. Power Sources, Vol. 201, pp. 294-300.
  • 26. Jin C., Sheng O., Luo J., Yuan H., Fang C., Zhang W., Huang H., Gan Y., Xia Y., Liang C., Zhang J. & Tao X. (2017) 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries, Nano Energy, Vol. 37, pp. 177-186.
  • 27. Kim H.-S. & Jeong C.-S. (2011) Electrochemical properties of binary electrolytes for lithium-sulfur batteries, Bull. Korean Chem. Soc., Vol. 32, pp. 3682-3686.
  • 28. Kushnir D. (2015) Lithium Ion Battery Recycling Technology 2015: Current State and Future Prospects. Environmental Systems Analysis, Chalmers University, Goteborg, Sweden, ESA REPORT.
  • 29. Kwade A. & Diekmann J. (2018) Recycling of Lithium-Ion Batteries. The LithoRec Way, Springer International Publishing, Chalmers University of Technology.
  • 30. Lacey M.J., Jeschull F., Edström K. & Brandell D. (2013) Why PEO as a binder or polymer coating increases capacity in the Li-S system, Chemical Communications, Vol. 49, no. 76, pp. 8531-8533.
  • 31. Li G., Cai W., Liu B. & Li Z. (2015) A multi functional binder with lithium ion conductive polymer and polysulfide absorbents to improve cycleability of lithium-sulfur batteries, Journal of Power Sources, Vol. 294, pp. 187-192.
  • 32. Li G., Ling M., Ye Y., Li Z., Guo J., Yao Y., Zhu J., Lin Z. & Zhang S. (2015) Acacia senegal-inspired bifunctional binder for longevity of lithium-sulfur batteries, Advanced Energy Materials, Vol. 5, Issue 21, pp. 1500878.
  • 33. Liang Z., Lin D., Zhao J., Lu Z., Liu Y., Liu C., Lu Y., Wang H., Yan K., Tao X. & Cui Y., (2016) Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating, Proc. Natl. Acad. Sci. USA, Vol. 113, pp. 2862-2867.
  • 34. Lin D., Liu Y., Liang Z., Lee H.-W., Sun J., Wang H., Yan K., Xie J. & Cui Y. (2016) Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes, Nat. Nanotechnol., Vol. 11, pp. 626-632.
  • 35. Lin D., Liu Y., Chen W., Zhou G., Liu K., Dunn B. & Cui Y. (2017) Conformal Lithium Fluoride Protection Layer on Three-Dimensional Lithium by Nonhazardous Gaseous Reagent Freon, NanoLett., Vol. 17, pp. 3731-3737.
  • 36. Liu M., Qin X., He Y.-B., Li B. & Kang F. (2017) Recent innovative configurations in high-energy lithium-sulfur batteries, Mater. Chem. A, Vol. 5, pp. 5222-5234.
  • 37. Liu Y., Lin D., Liang Z., Zhao J., Yan K. & Cui Y. (2016) Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode, Nat. Commun., Vol. 7, pp. 10992.
  • 38. Lopez-Aranguren P., Berti N., Dao A.H., Zhang J., Cuevas F., Latroche M. & Jordy C. (2017) An all-solid-state metal hydride - Sulfur lithium-ion battery, Journal of Power Sources, Vol. 357, pp. 56-60.
  • 39. Ma Z., Dou S., Shen A., Tao L., Dai L. & Wang S. (2015) Sulfur-Doped Graphene Derived from Cycled Lithium-Sulfur Batteries as a Metal-Free Electrocatalyst for the Oxygen Reduction Reaction, Angew. Chem. Int. Ed., Vol. 54, pp. 1888-1892.
  • 40. Manthiram A., Fu Y.Z., Chung S.H., Zu C.X. & Su Y.S. (2014) Rechargeable lithium-sulfur batteries, Chem. Rev., Vol. 114, pp. 11751-11787.
  • 41. Mikhaylik Y., Kovalev I., Schock R., Kumaresan K., Xu J. & Affinito J. (2010) High energy rechargeable Li-S cells for EV application. status, remaining problems and solutions, ECS Transactions, Vol. 25, pp. 23-34.
  • 42. Moradi B. & Botte G.G. (2016) Recycling of graphite anodes for the next generation of lithium ion batteries, J Appl Electrochem, Vol. 46, pp. 123.
  • 43. Nagata H. & Chikusa Y. (2014) A lithium sulfur battery with high power density, J. Power Sources, Vol. 264, pp. 206-210.
  • 44. Pan J., Xu G., Ding B., Han J., Dou H. & Zhang X. (2015) Enhanced electrochemical performance of sulfur cathodes with a water-soluble binder, RSC Advances, Vol. 5, no. 18, pp. 13709-13714.
  • 45. Pan Q. & Weyhe R (2016) High energy lithium sulphur cells and batteries. Modelling and design of recycling process., Grant agreement no 666221 - Helis, H2020-NMP-2014-2015/H2020-NMP-GV-2014.
  • 46. Pang Q., Kundu D., Cuisinier M. & Nazar L.F. (2014) Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries, Nat. Commun., Vol. 5, pp. 4759.
  • 47. Pang Q., Liang X., Kwok C.Y. & Nazar L.F. (2016) Advances in lithium-sulfur batteries based on multfunctional cathodes and electrolytes, Nat. Energy, Vol. 1, pp. 16132.
  • 48. Park J.H., Yeo S.Y., Park J.K. & Lee Y.M. (2010) Electrochemical Performance of Lithium Sulfur Batteries with Plasticized Polymer Electrolytes based on P(VdF-co-HFP), Journal of the Korean Electrochemical Society, Vol. 13, pp. 110-115.
  • 49. Park J.-W., Yamauchi K., Takashima E., Tachikawa N., Ueno K., Dokko K. & Watanabe M. (2013) Solvent effect of room temperature ionic liquids on electro-chemical reactions in lithium-sulfur batteries, J. Phys. Chem. C, Vol. 117, pp. 4431-4440.
  • 50. Seh Z.W., Yu J.H., Li W., Hsu P-C, Wang H., Sun Y., Yao H., Zhang Q. & Cui, Y. (2014) Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes, Nat. Commun., Vol. 5, pp. 5017.
  • 51. Son Y., Lee J.S., Son Y., Jang J.H. & Cho J. (2015) Recent advances in lithium sulfide cathode materials and their use in lithium sulfur batteries, Adv. Energy Mater., Vol. 5, pp. 1500110.
  • 52. Song M.K., Cairns E.J. & Zhang Y. (2013) Lithium/sulfur batteries with high specific energy: old challenges and new opportunities, Nanoscale, Vol. 5, pp. 2186-2204.
  • 53. Teragawa S., Aso K., Tadanaga K., Hayashi A. & Tatsumisago M. (2014) Preparation of Li2S-P2S5 solid electrolyte from N-methylformamide solution and application for all-solid-state lithium battery, J. Power Sources, Vol. 248, pp. 939-942.
  • 54. Wang S., Ding Y., Zhou G., Yu G. & Manthiram, A. (2016) Durability of the Li1+xTi2- xAlx(PO4)3 Solid Electrolyte in Lithium-Sulfur Batteries, ACS Energy Lett., Vol. 1, pp. 1080-1085.
  • 55. Wang L.N. & Byon H.R. (2013) N-Methyl-N-propylpiperidinium bis(trifluoromethane-sulfonyl)imide-based organic electrolyte for high performance lithium-sulfur batteries, J. Power Sources, vol. 236, pp. 207-214.
  • 56. Wang L., Wang D., Zhang F.X. & Jin J. (2013) Interface chemistry guided long-cycle-life Li-S battery, Nano Lett., Vol. 13, pp. 4206-4211.
  • 57. Wei Seh Z., Li W., Cha J.J., Zheng G., Yang Y., McDowell M.T., Hsu P.-C. & Cui Y. (2013) Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries, Nat. Commun., Vol. 4, pp. 1331.
  • 58. Weyhe R. & Pan Q. (2016) High energy lithium sulphur cells and batteries. Review of recycling process woth directions for Li-S battery recycling, Grant agreement no 666221 - Helis, H2020-NMP-2014-2015/H2020-NMP-GV-2014.
  • 59. Xiang D., Wu M., Xu J., Guo J. & Chen Y. (2012) Detecting method of specific capacity of negative electrode material of lithium ion battery after circulation, China Patent CN102610792-A, July 25, 2012.
  • 60. Xu G.Y., Ding B., Pan J., Nie P., Shen L.F. & Zhang X.G. (2014) High performance lithium-sulfur batteries: advances and challenges, Journal of Materials Chemistry A, Vol. 2, pp. 12662-12676.
  • 61. Yamada T., Ito S., Omoda R., Watanabe T., Aihara Y., Agostini M., Ulissi U., Hassoun J. & Scrosati, B. (2015) All Solid-State Lithium-Sulfur Battery Using a Glass-Type P2S5-Li2S Electrolyte: Benefits on Anode Kinetics, J. Electrochem. Soc., Vol. 162, pp. A646-A651.
  • 62. Yao H., Yan K., Li W., Zheng G., Kong D., Seh Z.W., Narasimhan V.K., Liang Z. & Cui Y. (2014) Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode-separator interface, Energy & Environmental Science, Vol. 7, no. 10, pp. 3381-3390.
  • 63. Yu X., Joseph J. & Manthiram A. (2016) Suppression of the polysulfide-shuttle behavior in Li-S batteries through the development of a facile functional group on the polypropylene separator, Mater. Horiz., Vol. 3, pp. 314-319.
  • 64. Yu B-C, Jung J-W, Park K. & Goodenough J.B. (2017) A new approach for recycling waste rubber products in Li-S batteries, Energy Environ. Sci., Vol. 10, pp. 86-90.
  • 65. Zhang S.S. (2013) Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions, J. Power Sources, Vol. 231, pp. 153-162.
  • 66. Zhang S.S. (2013) New insight into liquid electrolyte of rechargeable lithium/sulfur battery, Electrochimica Acta, Vol. 97, pp. 226-230.
  • 67. Zhang S.S. & Tran D.T. (2013) How a gel polymer electrolyte affects performance of lithium/sulphur batteries, Electrochim. Acta, Vol. 114, pp. 296-302.
  • 68. Zhang T., He Y., Ge L., Fu R., Zhang X. & Huang Y. (2013) Characteristics of wet and dry crushing methods in the recycling process of spent lithiumion batteries, J Power Sour, Vol. 240, pp. 766-771.
  • 69. Zhao Y., Liu M., Lv W., He Y., Wang C., Yun Q., Li B., Kang F. & Yang Q. (2016) Dense coating of Li4Ti5O12 and graphene mixture on the separator to produce long cycle life of lithium-sulfur battery, Nano Energy, Vol. 30, pp. 1-8.
  • 70. Zhao Y., Zhang Y., Gosselink D., Doan T.N., Sadhu M., Cheang H.J. & Chen P. (2012) Polymer electrolytes for lithium/sulfur batteries, Membranes (Basel), Vol. 2, pp. 553-564.
  • 71. Zhou G.M., Pei S., Li L., Wang D-W, Wang S., Huang K., Yin L-C, Li F. & Cheng H.-M. (2014) A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries, Adv. Mater., Vol. 26, pp. 625-631.
  • 72. Zhou W.D., Yu Y.C., Chen H., DiSalvo F.J. & Abruna H.D. (2013) Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries. J. Am. Chem. Soc., Vol. 135, pp. 16736-16743.
  • 73. Zhu J., Chen C., Lu Y., Zang J., Jiang M., Kim D. & Zhang X. (2016) Highly porous polyacrylonitrile/graphene oxide membrane separator exhibiting excellent anti-self-discharge feature for high-performance lithium-sulfur batteries, Carbon, Vol. 101, pp. 272-280.
  • 74. Zhu Y., Li J., & Liu J. (2017) A bifunctional ion-electron conducting interlayer for high energy density all-solid-state lithium-sulfur battery, Journal of Power Sources, Vol. 351, pp. 17-25.
  • 75. Zhuang T., Huang J., Peng H., He L., Cheng X., Che C. & Zhang Q. (2016) Rational Integration of Polypropylene/Graphene Oxide/Nafion as Ternary-Layered Separator to Retard the Shuttle of Polysulfides for Lithium-Sulfur Batteries, Small, Vol. 12, pp. 381-389.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2f5cbf0-b566-43cd-bc03-0e4498ca6e2c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.