PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Control of a redundant 7DOF upper-limb power-assist exoskeleton robot

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Many kinds of power-assist robots have been developed in order to assist daily activities or rehabilitation of the elderly or physically weak persons. Upper-limb power-assist robots are important to assist in many daily life activities such as eating, drinking, etc.. A human upper-limb has 7 degrees of freedom to achieve various tasks dexterously. Therefore, to assist all upper-limb joint motions of a human, the upper-limb power-assist robot is required to have 7DOF. To achieve a desired task, a person moves the hand to the desired position and orientation and/or applies certain amount of force to the target. Therefore, it is important that the upper-limb power-assist robots help control the hand position/ orientation or hand force of the user. However, the hand position/orientation or hand force is 6-dimensional vector, so the 7DOF upper-limb power-assist robot has a redundancy and in general, a pseudo-inverse matrix is used in the control. In this paper, an optimal control method is proposed to deal with the redundancy of the upper-limb power-assist exoskeleton robot considering comfortable motion of the user. The motion intention and the comfort of the user are taken into account in the pro-posed method. The effectiveness of the proposed method was evaluated by the experiments.
Rocznik
Strony
207--214
Opis fizyczny
Bibliogr. 14 poz., rys.
Twórcy
autor
  • Department of Advanced Technology Fusion, Saga UniversitySaga 840-8502 Japan
autor
  • Department of Advanced Technology Fusion, Saga UniversitySaga 840-8502 Japan
autor
  • Department of Mechanical Engineering, University of South FloridaFL, USA
Bibliografia
  • [1] E. Guizzo E. and H. Goldstein, The Rise of the Body Bots, IEEE Spectrum, vol.42, no.10, 2005, pp.42-48.
  • [2] K. Kiguchi, T. Tanaka and T. Fukuda, Neuro-Fuzzy Control of a Robotic Exoskeleton with EMG Signals, IEEE Trans. on Fuzzy Systems, vol.12, no.4, 2004, pp.481-490.
  • [3] R.A.R.C. Gopura and K. Kiguchi, SUEFUL-7: A 7DOF Upper-Limb Exoskeleton Robot with Muscle-Model-Oriented EMG-Based Control, Proc. of IEEE/RSJ International Conf. on Intelligent Robots and Systems, 2009, pp.1126-1131.
  • [4] J. C. Perry et al., Upper-Limb Powered Exoskeleton Design, Trans. on Mechatronics, vol.12, no.4, 2007, pp.408-417.
  • [5] J. L. Pons, et al., Upper-Limb Robotic Rehabilitation Exoskeleton: Tremor Suppression, Rehabilitation Robotics, Book edited by S. S. Kommu, 2007, pp.453-470.
  • [6] N.G. Tsagarkis and D.G. Caldwell, Development and Control of a ‘Soft-Actuated’ Exoskeleton for Use in Physiotherapy and Training, Autonomous Robots, vol.15, no.3, 2003, pp.21-33.
  • [7] A.B. Zoss, H. Kazerooni, and A. Chu, Biomechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX), IEEE/ASME Transactions on Mechatronics, vol.11, no.2, 2006, pp. 128-138.
  • [8] S. Lee and Y. Sankai, Power Assist Control for Walking Aid with HAL-3 Based on EMG and Impedance Adjustment around Knee Joint, Proc. of IEEE/RSJ International Conf. on Intelligent Robots and Systems, 2002, pp.1499-1504.
  • [9] K. Nagai and I. Nakanishi, Force Analysis of Exoskeletal Robotic Orthoses for Judgment on Mechanical Safety and Possibility of Assistance, Journal of Robotics and Mechatronics, vol.16, no. 5, 2004, pp.473-481.
  • [10] L. Lucas, M. DiCicco, and Y. Matsuoka, An EMGControlled Hand Exoskeleton for Natural Pinching, Journal of Robotics and Mechatronics, vol.16, no. 5, 2004, pp.482-488.
  • [11] J. Rosen, M. Brand, M. Fuchs, and M. Arcan, A Myosignal-Based Powered Exoskeleton System, IEEE Trans. on System Man and Cybernetics, Part A, vol.31, no.3, 2001, pp. 210-222.
  • [12] T. Flash and N. Hogan, The coordination of arm movements: An experimentally confirmed mathematical model, Journal of Neuroscience, vol.5, no.7, 1985, pp.1688-1703.
  • [13] Y. Uno, M. Kawato, and R. Suzuki, Formation and control of optical trajectory in human multi-joint arm movement - minimim torque-change model, Biological Cybernetics, 61, 1989, pp.89-101.
  • [14] K. Kiguchi and Q. Quan, Muscle-Model-Oriented EMG-Based Control of an Upper-Limb Power-Assist Exoskeleton with a Neuro-Fuzzy Adjuster, Proc. of IEEE World Congress of Computational Intelligence, 2008, pp.1179-1184.
  • [15] L. Sciavicco and B. Siciliano, Modeling and Control of Robot Manpulators, McGraw Hill Co., 1996.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2f440e3-a99e-4edc-8992-990b91366291
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.