Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Surface roughness is influenced by various factors with uncertainty characteristic, and roughness reliability can be used for the assessment of the surface quality of CNC milling. The paper develops a method for the assessment of surface quality by considering the coupling effect and uncertainty characteristicsof various factors. According to the milling kinematics theory, the milling surface topography simulation is conducted by discretizing the cutting edge, machining time, and workpiece. Considering thecoupling effect of various factors, a roughness prediction model isestablished by the SSA-LSSVM, and its prediction accuracy reachesmore than 95%. Then, the roughness reliability model isdevelopedby applying the response surface methodology to achieve the assessment of surface quality. The proposed method is verified by the milling experiments. The maximum values of the relative errors between the simulation and experimental results of the surfaceroughness and roughness reliability are 9% and 1.5% respectively, indicating the correctness of the method proposed in the paper.
Czasopismo
Rocznik
Tom
Strony
art. no. 183558
Opis fizyczny
Bibliogr. 40 poz., fot., rys., tab., wykr.
Twórcy
autor
- Logistics Engineering College, Shanghai Maritime University, Shanghai, 201306, China
autor
- Logistics Engineering College, Shanghai Maritime University, Shanghai, 201306, China
autor
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University,130000, China
- Key Laboratory of Advanced Manufacturing and Intelligent Technology for High-end CNC Equipment,130000, China
autor
- Yingtan Advanced Technical School, Jiangxi 335000, China
autor
- Logistics Engineering College, Shanghai Maritime University, Shanghai, 201306, China
autor
- College of Robotics, Beijing Union University, Beijing, 100027, China
Bibliografia
- 1. DongY, LiS, LiYan, et al. Research on Modeling and Simulation of Surface Topography Obtained by Trochoidal Milling Mode with Ball End Milling Cutter[J]. Journal of Mechanical Engineering, 2018, 54(19): 212-223. DOI:10.3901/JME.2018.19.212.
- 2. WangB, WangZ, HouY,et al. Surface texture prediction and analysis of ball end milling cutter machining[J]. Machine Tools and Hydraulics,2016, 044(013):1-5.(In Chinese).
- 3. Yuan L, Zeng S, Chen Z. Simultaneous predictionof surface topography and surface location error in milling[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2015, 229(10): 1805-1829. DOI:10.1177/0954406214547401.
- 4. Peng Z, Jiao L, Yan P, et al. Simulation and experimental study on 3D surface topography in micro-ball-end milling[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96: 1943-1958. https://doi.org/10.1007/s00170-018-1597-6.
- 5. Zhang W, Hua B, Zhang L, et al. Modeling and simulation of Surface Topography in secondary milling with ellipsoid end millingcutter[J]. International Journal on Interactive Designand Manufacturing (IJIDeM), 2023: 1-14. https://doi.org/10.1007/s12008-023-01475-6.
- 6. Zhang C, Zhang H, Li Y, et al. Modeling and on-line simulation of surface topography considering tool wear in multi-axis milling process[J]. The International Journal of Advanced Manufacturing Technology, 2015, 77: 735-749. https://doi.org/10.1007/s00170-014-6485-0.
- 7. Bo L, Yanlong C, Wenhua C, et al. Geometry simulation and evaluation of the surface topography in five-axis ball-end milling[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93: 1651-1667. https://doi.org/10.1007/s00170-017-0505-9.
- 8. Hao Y, Liu Y. Analysis of milling surface roughness prediction for thin-walled parts with curved surface[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93: 2289-2297. https://doi.org/10.1007/s00170-017-0615-4.
- 9. Shujuan L, Dong Y, Li Y, et al. Geometrical simulation and analysis of ball-end milling surface topography[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102: 1885-1900. https://doi.org/10.1007/s00170-018-03217-5.
- 10. Żurawski K, Żurek P, Kawalec A, et al. Modeling of Surface Topography after Milling with a Lens-Shaped End-Mill, Considering Runout[J]. Materials, 2022, 15(3): 1188. https://doi.org/10.3390/ma15031188.
- 11. Chen W, Zheng L, Xie W, et al. Modelling and experimental investigation on textured surface generation in vibration-assisted micro-milling[J]. Journal of Materials Processing Technology, 2019, 266: 339-350. https://doi.org/10.1016/j.jmatprotec.2018.11.011.
- 12. Buj-Corral I, Vivancos-Calvet J, Dominguez-Fernandez A. Surface topography in ball-end milling processes as a function of feed per tooth and radial depth of cut[J]. International Journal of Machine Tools and Manufacture, 2012, 53(1): 151-159. https://doi.org/10.1016/j.ijmachtools.2011.10.006
- 13. Xu J, Xu L, Geng Z, et al. 3D surface topography simulation and experiments for ball-end NC milling considering dynamic feedrate[J]. CIRP Journal of Manufacturing Science and Technology, 2020, 31: 210-223. https://doi.org/10.1016/j.cirpj.2020.05.011.
- 14. Zheng M, Dong Y, et al. Effect of inclination-angle of ball-milling cutter on surface morphology of hard aluminium alloy workpiece. [J] Lanzhou Univ Technol 2016, 42(4):36–41. (In Chinese)
- 15. Agrawal A, Goel S, Rashid W B, et al. Prediction of surface roughness during hard turning of AISI 4340 steel (69 HRC) [J]. Applied Soft Computing, 2015, 30: 279-286. https://doi.org/10.1016/j.asoc.2015.01.059.
- 16. Kong D, Zhu J, Duan C, et al. Bayesian linear regression for surface roughness prediction [J]. Mechanical Systems and Signal Processing, 2020, 142: 106770. https://doi.org/10.1016/j.ymssp.2020.106770.
- 17. Shahrajabian H, Farahnakian M. Modeling and multi-constrained optimization in drilling process of carbon fiber reinforced epoxy composite[J]. International Journal of Precision Engineering and Manufacturing, 2013, 14: 1829-1837. https://doi.org/10.1007/s12541-013-0245-1.
- 18. Ouyang H B. Deformation prediction based on BP artificial neural network of milling thin-walled aluminum alloy parts[J]. Applied Mechanics and Materials, 2014, 687-691: 492-495 https://doi.org/10.4028/www.scientific.net/AMM.687-691.492
- 19. Han J, Zhu J, Zheng W, et al. Influence of metal forming parameters on surface roughness and establishment of surface roughness prediction model[J]. International Journal of Mechanical Sciences, 2019, 163: 105093. https://doi.org/10.1016/j.ijmecsci.2019.105093
- 20. Liu C, Huang Z, Huang S, et al. Surface roughness prediction in ball screw whirlwind milling considering elastic-plastic deformation caused by cutting force: Modelling and verification[J]. Measurement, 2023, 220: 113365. https://doi.org/10.1016/j.measurement.2023.113365.
- 21. Li B, Tian X. An effective PSO-LSSVM-based approach for surface roughness prediction in high-speed precision milling[J]. Ieee Access, 2021, 9: 80006-80014. https://doi.org/10.1109/ACCESS.2021.3084617
- 22. Hong S, Yue T, Liu H. Vehicle energy system active defense: a health assessment of lithium‐ion batteries[J]. International Journal of Intelligent Systems, 2022, 37(12): 10081-10099.https://doi.org/10.1002/int.22309
- 23. Hong S, Zeng Y. A health assessment framework of lithium-ion batteries for cyber defense[J]. Applied Soft Computing, 2021, 101: 107067.
- 24. Yuan X, Chen C, Lei X, et al. Monthly runoff forecasting based on LSTM–ALO model[J]. Stochastic environmental research and risk assessment, 2018, 32: 2199-2212.https://doi.org/10.1007/s00477-018-1560-y
- 25. Adnan R M, Mostafa R R, Dai H L, et al. Pan evaporation estimation by relevance vector machine tuned with new metaheuristic algorithms using limited climatic data[J]. Engineering Applications of Computational Fluid Mechanics, 2023, 17(1): 2192258. https://doi.org/10.1080/19942060.2023.2192258.
- 26. Adnan R M, Mostafa R R, Islam A R M T, et al. Estimating reference evapotranspiration using hybrid adaptive fuzzy inferencingcoupled with heuristic algorithms[J]. Computers and Electronics in Agriculture, 2021, 191: 106541. https://doi.org/10.1016/j.compag.2021.106541.
- 27. Adnan R M, Dai H L, Mostafa R R, et al. Modelling groundwater level fluctuations by ELM merged advanced metaheuristic algorithms using hydroclimatic data[J]. Geocarto International, 2023, 38(1): 2158951.https://doi.org/10.1080/10106049.2022.2158951.
- 28. Adnan R M, Dai H L, Mostafa R R, et al. Modeling multistep ahead dissolved oxygen concentration using improved support vectormachines by a hybrid metaheuristic algorithm[J]. Sustainability, 2022, 14(6): 3470. https://doi.org/10.3390/su14063470.
- 29. Lu X, Hu X, Wang H, et al. Research on the prediction model of micro-milling surface roughness of Inconel718 based on SVM[J]. Industrial Lubrication and Tribology, 2016, 68(2): 206-211.https://doi.org/10.1016/j.neucom.2015.08.124
- 30. Misaka T, Herwan J, Ryabov O, et al. Prediction of surface roughness in CNC turning by model-assisted response surface method[J]. Precision Engineering, 2020, 62: 196-203.https://doi.org/10.1016/j.precisioneng.2019.12.004
- 31. Pimenov D Y, Bustillo A, Mikolajczyk T. Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth[J]. Journal of Intelligent Manufacturing, 2018, 29(5): 1045-1061. https://doi.org/10.1007/s10845-017-1381-8
- 32. Li, W, Shuyi G E, Hao S I, et al. Elliptical model for surface topography prediction in five-axis flank milling[J]. Chinese Journal of Aeronautics, 2020, 33(4): 1361-1374. https://doi.org/10.1016/j.cja.2019.06.007.
- 33. YuanX, WangY, ZhangY. Support vector machine inverse model control based on fuzzy control compensation[J]. Electronic Measurement and Instrumentation. 2007, 21(01): 39-43. (In Chinese).
- 34. WangH, HuZ, ZhangY et al. Short-term wind speed combination prediction based on clustered empirical mode decomposition and least squares support vector machine[J]. Journalof Electrotechnology, 2014, 29(04): 237-245. (In Chinese).
- 35. Song C, Yao L, Hua C, et al. A water quality prediction model based on variational mode decomposition and the least squares support vector machine optimized by the sparrow search algorithm (VMD-SSA-LSSVM) of the Yangtze River, China[J]. Environmental monitoring and assessment, 2021, 193(6): 363. https://doi.org/10.1007/s10661-021-09127-6.
- 36. Yue, Y., Cao, L., Lu, D. et al. Review and empirical analysis of sparrow search algorithm. Artif Intell Rev 56, 10867–10919 (2023). https://doi.org/10.1007/s10462-023-10435-1.
- 37. Changcong, Z.; Zhenzhou, L.; Feng, Z.; Zhufeng, Y. An Adaptive Reliability Method Combining Relevance Vector Machine and Importance Sampling. Struct. Multidiscp. Optim. 2015, 52, 945–957. https://doi.org/10.1007/s00158-015-1287-z.
- 38. Ou Y, Wu Y, Cheng J, et al. Response Surface Method for Reliability Analysis Based on Iteratively-Reweighted-Least-Square Extreme Learning Machines[J]. Electronics, 2023, 12(7): 1741. https://doi.org/10.3390/electronics12071741.
- 39. Zhang Z, Hu X, Qi Y, et al. Geometric error allocation method for CNC machine tools based on vector projection response surface[J]. Journal of Jilin University (Engineering Edition),2022,52(2): 384-391. Doi:10.13229/j.cnki.jdxbgxb20211089.
- 40. Niu P, Cheng Q, Zhang T, et al. Hyperstatic mechanics analysis of guideway assembly and motion errors prediction method underthread friction coefficient uncertainties[J]. Tribology International, 2023, 180: 108275. https://doi.org/10.1016/j.triboint.2023.108275.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2f174fa-319f-4027-a23e-83647effbf53