PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Gravity-based pre-concentration strategies for complex rare earth ore containing niobium and zirconium

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Balzhe rare earth mine, renowned for its rich reservoirs of niobium, zirconium, and rare earth elements, poses a unique challenge due to its diverse and interbedded mineral composition. Despite the abundance of these elements, their valuable grade remains notably low, falling short of economic thresholds. To this end, pre-concentration of valuable minerals to discard gangue minerals before flotation would be an economical option. In response, this study delves into the feasibility of gravity-induced pre-concentration, aiming to segregate valuable minerals from gangue for subsequent flotation processes. Conducting float-and-sink tests on varied particle sizes (-2+0.5 mm, -0.5+0.074 mm, and -0.074+0.02 mm) within heavy liquids of specific gravities (ranging from 2.55 to 2.85), the study reveals the effectiveness of gravity separation. Notably, particles sized -2+0.5 mm and -0.074+0.02 mm demonstrated superior separation performance over the -0.5+0.074 mm fraction. Comparative analysis of diverse gravity separation equipment unveiled compelling results. The dense medium cyclone separator showcased impressive recovery rates and high-grade concentrates of Nb2O5, ZrO2, and total rare earth oxides (TREO) at 0.34%, 8.20%, and 0.41%, respectively, surpassing the sand table's performance for -2+0.5 mm particles. Conversely, for -0.5+0.074 mm particles, the shaking table exhibited optimal separation efficiency, yielding grades of Nb2O5, ZrO2, and TREO at 0.37%, 4.08%, and 0.44%, with substantial recovery values. Ultimately, the Knelson centrifugal separator proved most effective for -0.074+0.02 mm particles, yielding notable grades and recoveries of Nb2O5, ZrO2, and TREO. This study underscores the promising potential of gravity-induced pre-concentration techniques for enhancing the recovery of valuable elements from the complex Balzhe rare earth ore, offering critical insights into optimizing mineral extraction processes.
Rocznik
Strony
art. no. 183609
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
  • School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
autor
  • School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
autor
  • School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
autor
  • CNNC Beijing Research Institute of Chemical Engineering and Metallurgy, CNNC, Tongzhou District, Beijing 101149, China
  • Department of Mining Engineering, Middle East Technical University, Ankara 06800, Turkey
autor
  • School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
  • School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
  • School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
Bibliografia
  • ABAKA-WOOD, G.B, ZANINE, M., ADDAI-MENSAH, J., et al., 2019. Recovery of rare earth elements minerals from iron oxide–silicate rich tailings–Part 2: Froth flotation separation. Minerals Eng, 142, 105888.
  • AMBROS, W M., 2023, Gravity Concentration in Urban Mining Applications—A Review. Recycling, 8(6), 85.
  • CARPENTER, J.L., 2021. Gravity Separation and Desliming using Inclined Channels Subject to Different G-Forces. PhD Thesis. University of Newcastle, Australia.
  • CHANG, H., MEI, L.I., LIU, Z., HU, Y., ZHANG, F., 2010. Study on separation of rare earth elements in complex system. J. Rare Earths, 28, 116-119.
  • CHEN, Z., LI, Z., CHEN, J., et al., 2022. Recent advances in selective separation technologies of rare earth elements: A review. J. Environ., 10(1), 107104.
  • DAS, S.K., ANGADI, S.I., KUNDU, T., et al., 2020. Mineral processing of rare earth ores. Rare-Earth Metal Recovery for Green Technologies: Methods and Applications, 9-38.
  • DUTTA, T., KIM, K.H., UCHIMIY, A.M., et al., 2016. Global demand for rare earth resources and strategies for green mining. ENVIRON RES, 150, 182-190.
  • GOLEV, A., SCOTT, M, ERSKINE, P.D., et al., 2014. Rare earths supply chains: Current status, constraints and opportunities. Resour., 41, 52-59.
  • HAQUE, N., HUGHES, A., LIM, S., et al., 2014. Rare earth elements: Overview of mining, mineralogy, uses, sustainability and environmental impact. Resour., 3(4), 614-635.
  • HU, B,. HE, M., CHEN, B., et al., 2016. Separation/preconcentration techniques for rare earth elements analysis. 0.0, 1(10), 20160056.
  • HUMPHRIES, M., 2010. Rare earth elements: the global supply chain. Diane Publishing.
  • JIAO, H., ZHAO X., ZHAO Y., 2010. Theoretical study on separation density of gravity beneficiation. Journal of Coal Science and Engineering (China), 16(2), 193-197.
  • JHA, A.R., 2014. Rare earth materials: properties and applications. CRC Press. JORDENS, A., CHENG, Y. P., WATERS, K.E., 2013. A review of the beneficiation of rare earth element bearing minerals. Minerals Eng, 41, 97-114.
  • JORDENS, A., SHERIDAN, R.S, ROWSON, N.A., et al., 2014. Processing a rare earth mineral deposit using gravity and magnetic separation. Minerals Eng, 62, 9-18.
  • JORDENS, A., MARION, C,. LANGLIOS, R., et al., 2016. Beneficiation of the Nechalacho rare earth deposit. Part 1: Gravity and magnetic separation. Minerals Eng, 99, 111-122.
  • LAN, X., GAO, J., DU, Y., et al., 2018. Mineral evolution and separation of rare-earth phases from Bayan Obo rare-earth concentrate in a super-gravity field. J. Alloys Compd., 731, 873-880.
  • LIU, T., CHEN, J., 2021. Extraction and separation of heavy rare earth elements: A review. Sep. Purif. Technol., 276: 119263.
  • MARION, C., GRAMMATIKOPOULOS, T., RUDINSKY, S., et al., 2018. A mineralogical investigation into the preconcentration of the Nechalacho deposit by gravity separation. Minerals Eng, 121, 1-13.
  • MUKABA, J.L., EZC, C.P., PEREAO, O., et al., 2021. Rare earths’ recovery from phosphogypsum: an overview on direct and indirect leaching techniques. Minerals, 11(10), 1051.
  • NAYAK, A., JENA, M.S., MANDRE, N.R., 2021. Application of enhanced gravity separators for fine particle processing: An overview. J. Sustain., 7: 315-339.
  • OPARE, E.O., STRUHS, E., MIRKOUEI, A., 2021. A comparative state-of-technology review and future directions for rare earth element separation. Renew. Sust. Energ. Rev., 143, 110917.
  • ROZELLE, P.L., TARKA, T.J., MAMULA, N., 2019. The Application of Current Mineral Processing and Extractive Metallurgy Technologies to Potential Rare Earth Ores in the US Coal Measures: Near-Term Opportunities to Fill Out the US Value Chain. USDOE Office of Fossil Energy (FE)(United States); Leonardo Technologies, Inc., St. Clairsville, OH (United States).
  • TALAN, D., HUANG, Q., 2022. A review of environmental aspect of rare earth element extraction processes and solution purification techniques. Minerals Eng, 179, 107430.
  • TRAORE ,M., GONG, A., WANG, Y., et al., 2023. Research progress of rare earth separation methods and technologies. J. Rare Earths, 41(2): 182-189.
  • UDA, T., JACOB, K.T, HIRASAWA, M., 2000. Technique for enhanced rare earth separation. Science, 289(5488), 2326-2329.
  • VEASEY, A., 1993. The physical separation and recovery of metals from waste, volume one. CRC Press.
  • WANG, J., ZU, P., YI, S., et al., 2021. Preconcentration of iron, rare earth, and fluorite from Bayan Obo ore using superconducting magnetic separation. MINING METALL EXPLOR, 38, 701-712.
  • WAKEMAN, R.J., TARLETONE, S., 1999. Filtration: equipment selection, modelling and process simulation. Elsevier.
  • WENG, Z., JOWITT, S.M., MUDD, G.M., et al., 2015. A detailed assessment of global rare earth element resources: opportunities and challenges. Econ Geol, 110(8), 1925-1952.
  • YANG, X.J., LIN, A., LI, X.L., et al., 2013. China's ion-adsorption rare earth resources, mining consequences and preservation. Environ. Dev, 8: 131-136.
  • ZHANG, J., ZHAO, B., SCHREINER, B., 2016. Separation hydrometallurgy of rare earth elements. Springer
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2ed5f0a-cde6-4f99-99c5-999715eae8b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.