PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Multiple input CNN architecture for tool state recognition in the milling process based on time series signals

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study presents a tailored application of a multiple-input convolutional neural network (CNN) for tool state recognition in the milling process. Our approach uniquely applies an 11-input CNN to classify tool wear in chipboard milling, utilizing scalogram images derived from time-series signals. The primary objective was to categorize tool wear into three classes: green, yellow, and red, signifying the progression of wear. The study involved 75 samples (25 samples per class), each comprising 11 signals transformed into scalograms via continuous wavelet transform. The dataset of 825 scalogram images enabled the development of a CNN-based diagnostic model, achieving a notable accuracy of 96.00%, which is an improvement over a previous methods (93.33%).
Rocznik
Strony
41--60
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
  • Department of Artificial Intelligence, Institute of Information Technology, Warsaw University of Life Sciences, Warsaw, Poland
  • Department of Artificial Intelligence, Institute of Information Technology, Warsaw University of Life Sciences, Warsaw, Poland
  • Department of Mechanical Processing of Wood, Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences, Warsaw, Poland
autor
  • Department of Artificial Intelligence, Institute of Information Technology, Warsaw University of Life Sciences, Warsaw, Poland
  • Department of Artificial Intelligence, Institute of Information Technology, Warsaw University of Life Sciences, Warsaw, Poland
Bibliografia
  • [1] Bengio, Y. Learning deep architectures for AI. Foundations and trends® in Machine Learning 2, 1 (2009), 1–127.
  • [2] Choudhary, A., Mishra, R. K., Fatima, S., and Panigrahi, B. K. Multi-input CNN based vibro-acoustic fusion for accurate fault diagnosis of induction motor. Engineering Applications of Artificial Intelligence 120 (2023), 105872.
  • [3] Demir, F., Turkoglu, M., Aslan, M., and Sengur, A. A new pyramidal concatenated CNN approach for environmental sound classification. Applied Acoustics 170 (2020), 107520.
  • [4] Deng, L., and Yu, D. Deep learning: methods and applications. Foundations and trends® in signal processing 7, 3–4 (2014), 197–387.
  • [5] Goodfellow, I., Bengio, Y., and Courville, A. Deep learning. MIT Press, 2016.
  • [6] Hu, J., Song, W., Zhang, W., Zhao, Y., and Yilmaz, A. Deep learning for use in lumber classification tasks. Wood Science and Technology 53, 2 (2019), 505–517.
  • [7] Ibrahim, I., Khairuddin, A. S. M., Abu Talip, M. S., Arof, H., and Yusof, R. Tree species recognition system based on macroscopic image analysis. Wood Science and Technology 51 (2017), 431–444.
  • [8] Iskra, P., and Hernández, R. E. Toward a process monitoring and control of a CNC wood router: Development of an adaptive control system for routing white birch. Wood and Fiber Science 42, 4 (2010), 523–535.
  • [9] Jegorowa, A., Górski, J., Kurek, J., and Kruk, M. Use of nearest neighbors (k-NN) algorithm in tool conditio identification in the case of drilling in melamine faced particleboard. Maderas: Ciencia y Tecnologia 22, 2 (2020), 189 – 196.
  • [10] Jegorowa, A., Kurek, J., Antoniuk, I., Dołowa, W., Bukowski, M., and Czarniak, P. Deep learning methods for drill wear classification based on images of holes drilled in melamine faced chipboard. Wood Science and Technology 55, 1 (2021), 271–293.
  • [11] Jemielniak, K., Urbański, T., Kossakowska, J., and Bombiński, S. Tool condition monitoring based on numerous signal features. The International Journal of Advanced Manufacturing Technology 59, 1-4 (2012), 73–81.
  • [12] Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet classification with deep convolutional neural networks. Communications of the ACM 60, 6 (2017), 84–90.
  • [13] Kuo, R. J. Multi-sensor integration for on-line tool wear estimation through artificial neural networks and fuzzy neural network. Engineering Applications of Artificial Intelligence 13, 3 (2000), 249–261.
  • [14] Kurek, J., Antoniuk, I., Górski, J., Jegorowa, A., Świderski, B., Kruk, M., Wieczorek, G., Pach, J., Orłowski, A., and Aleksiejuk-Gawron, J. Classifiers ensemble of transfer learning for improved drill wear classification using convolutional neural network. Machine Graphics &Vision 28, 1/4 (2019), 13–23.
  • [15] Kurek, J., Antoniuk, I., Górski, J., Jegorowa, A., Świderski, B., Kruk, M., Wieczorek, G., Pach, J., Orłowski, A., and Aleksiejuk-Gawron, J. Data augmentation techniques for transfer learning improvement in drill wear classification using convolutional neural network. Machine Graphics &Vision 28, 1/4 (2019), 3–12.
  • [16] Kurek, J., Kruk, Osowski, S., M., Hoser, P., Wieczorek, G., Jegorowa, Górski, J., A., Wilkowski, J., Śmietańska, K., and Kossakowska, J. Developing automatic recognition system of drill wear in standard laminated chipboard drilling process. Bulletin of the Polish Academy of Sciences: Technical Sciences 64, 3 (2016), 633–640.
  • [17] Kurek, J., Krupa, A., Antoniuk, I., Akhmet, A., Abdiomar, U., Bukowski, M., and Szymanowski, K. Improved drill state recognition during milling process using artificial intelligence. Sensors 23, 1 (2023), 448.
  • [18] Kurek, J., Świderski, B., Jegorowa, A., Kruk, M., and Osowski, S. Deep learning in assessment of drill conditio on the basis of images of drilled holes. In Eighth International Conference on Graphic and Image Processing (ICGIP 2016) 29-31 October 2016, Tokyo, Japan (2017) (Bellingham, 2017), T. Pham, V.Vozenilek and Z. Zeng, Eds., vol. 10225, SPIE, pp. 375–381.
  • [19] Kurek, J., Wieczorek, G., Świderski, B., Kruk, M., Jegorowa, A., and Osowski, S. Transfer learning in recognition of drill wear using convolutional neural network. In 2017 18th International Conference on Computational Problems of Electrical Engineering (CPEE) 11-13 September 2017, Kutna Hora, Czech Republic (2017), IEEE, pp. 1–4.
  • [20] Lemaster, R. L., Lu, L., and Jackson, S. The use of process monitoring techniques on a CNC wood. Part 1. Sensor selection. Forest Products Journal 50, 7/8 (2000), 31–38.
  • [21] Lemaster, R. L., Lu, L., and Jackson, S. The use of process monitoring techniques on a CNC wood router. Part 2. Use of a vibration accelerometer to monitor tool wear and workpiece quality. Forest Products Journal 50, 9 (2000), 59-64.
  • [22] Lin, K. K.-Y. (2020) Github repository for AlexNet model (accessed on 5 August 2023).
  • [23] Panda, S. S., Singh, A. K., Chakraborty, D., and Pal, S. K. Drill wear monitoring using back propagation neural network. Journal of Materials Processing Technology 172, 2 (2006), 283–290.
  • [24] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg A. C. and Fei-Fei L. ImageNet large scale visual recognition challenge. International Journal of Computer Vision 115, 3 (2015), 211–252.
  • [25] Schmidhuber, J. Deep learning in neural networks: An overview. Neural Networks 61 (2015), 85–117.
  • [26] Stanford Vision Lab, Stanford University, Princton University (2020) ImageNet web page (accessed on 5 August 2023).
  • [27] Świderski, B., Antoniuk, I., Kurek, J., Bukowski, M., Górski, J., and Jegorowa, A. Tool condition monitoring for the chipboard drilling process using automatic, signal-based tool state evaluation. BioResources 17, 3 (2022), 5349–5371.
  • [28] Świderski, B., Kurek, J., Osowski, S., Kruk, M., and Jegorowa, A. Diagnostic system of drill condition in laminated chipboard drilling process. In 21st International Conference on Circuits, Systems, Communications and Computers (CSCC 2017) Agia Pelagia Beach, Heraklion, Crete, Greece, July 14-17, 2017), N. Mastorakis, V. Mladenov and A. Bulucea, Eds., vol. 125 of MATEC Web of Conferences, EDP Sciences, 04002.
  • [29] Szwajka, K., and Trzepieciński, T. Effect of tool material on tool wear and delamination during machining of particleboard. Journal of Wood Science 62, 4 (2016), 305–315.
  • [30] Wei, W., Li, Y., Xue, T., Tao, S., Mei, C., Zhou, W., Wang, J., and Wang, T. The research progress of machining mechanisms in milling wood-based materials. BioResources 13, 1 (2018), 2139–2149.
  • [31] Wilkowski, J., and Górski, J. Vibro-acoustic signals as a source of information about tool wear during laminated chipboard milling. Wood Research 56, 1 (2011), 57–66.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2ece3b9-4bdc-4c25-8018-fcee35b260e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.