PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bacterial Response to Stress Induced by the Presence of Chromium

Identyfikatory
Warianty tytułu
PL
Odpowiedź bakterii na stres wywołany obecnością chromu
Języki publikacji
EN
Abstrakty
EN
The paper describes the occurrence of chromium in the environment and characterizes diverse strategies of bacterial response to Cr. Some of these strategies can be potentially used to optimize biological remediation of Cr pollution, serving as efficient and safe methods to remove Cr contamination. The development of methods for in situ bioremediation leads to effective neutralization of contamination at the site of pollution, without necessity to remove the contaminated soil, which is a big advantage in the case of areas located in the vicinity of roads.
PL
W artykule opisano obecność chromu w środowisku oraz scharakteryzowano różne strategie reakcji bakterii na chrom. Niektóre z tych reakcji mogą zostać wykorzystane w celu optymalizacji biologicznej utylizacji zanieczyszczeń chromem, ponieważ jej to skuteczna i bezpieczna metoda usuwania zanieczyszczeń chromem. Rozwój w zakresie metod utylizacji in situ prowadzi do skutecznej neutralizacji zanieczyszczeń w miejscu skażenia bez potrzeby przemieszczania zanieczyszczonej gleby. Jest to dużą zaletą w przypadku terenów położonych w sąsiedztwie dróg.
Czasopismo
Rocznik
Tom
Opis fizyczny
Bibliogr. 42 poz., pełen tekst na CD
Twórcy
  • University of Agriculture in Cracow, Faculty of Horticulture
Bibliografia
  • [1] Ackerley D.F., Gonzalez C.F., Park C.H., Blake R., Keyhan M., Matin A.: Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli, „Applied and Environmental Microbiology”, 70, 2004, p. 873–882.
  • [2] Anderson R.A.: Chromium as an essential nutrient for humans, “Regulatory toxicology and pharmacology”, 26, 1997, p. 35–41.
  • [3] Atiemo M.S., Ofosu G.F., Kuranchie-Mensah H., Tutu A.O., Palm N.D.M., Blankson S.A.: Contamination assessment of heavy metals in road dust from selected roads in Accra, Ghana, „Research Journal of Environmental and Earth Sciences”, 3, 2011, p.473–480,
  • [4] Batool R., Yrjälä K., Hasnain S.: Hexavalent chromium reduction by bacteria from tannery effluent, „Journal of Microbiology and Biotechnology”, 22, 2012, p. 547–554.
  • [5] Benazir J.F., Suganthi R., Rajvel D., Pooja M.P., Mathithumilan B.: Bioremediation of chromium in tannery effluent by microbial consortia, „African Journal of Biotechnology”, 9, 2010, p. 3140–3143.
  • [6] Camargo F.A.O., Bento F.M., Okeke B.C., Frankenberger W.T.: Chromate reduction by chromium resistant bacteria isolated from soils contaminated with dichromate, „Journal of Environmental Quality”, 32, 2003, p. 1228–1233.
  • [7] Cervantes C., Campos-Garcia J., Devars S., Gutierrez-Corona F., Loza-Tavera H., Torres-Guzman J.C., Moreno-Sanchez R.: Interactions of chromium with microorganisms and plants, „FEMS Microbiology Reviews”, 25, 2001, p. 335–347.
  • [8] Chen J.M., Hao O.J.: Microbial chromium(VI) reduction, „Critical Reviews in Environmental Science and Technology”, 28, 1998, p. 219–251.
  • [9] Cheng Y., Holman H.I., Lin Z.: Remediation of chromium and uranium contamination by microbial activity, „Elements”, 8, 2012, p.107–112.
  • [10] Cheung K.H., Gu J.D.: Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review, „International Biodeterioration and Biodegradation”, 59, 2007, p. 8–15.
  • [11] Chiu A., Chiu N., Shi X., Beaubier J., Dalal N.S.: Activation of a procarcinogen by reduction: Cr6+→Cr5+→Cr4+→Cr3+. A case study by electron spin resonance (ESR/PMR), „Journal of Environmental Science and Health – Part C Environmental Carcinogenesis and Ecotoxicology Reviews”, 16, 1998, p. 135–148.
  • [12] Christoforidis A., Stamatis N.: Heavy metal contamination in street dust and roadside soil along themajor national road in Kavala’s region, Greece, „Geoderma”, 151, 2009, p. 257–263.
  • [13] Cieślak-Golonka M.: Toxic and mutagenic effects of chromium(VI). A review, „Polyhedron”, 21, 1995, p. 3667–3689,
  • [14] Colin V.L., Villegas L.B., Abate C.M.: Indigenous microorganisms as potential bioremediators for environments contaminated with heavy metals, „International Biodeterioration and Biodegradation”, 69, 2012, p. 28–37.
  • [15] Costa M.: Toxicity and carcinogenicity of Cr(VI) in animal models and humans, „Critical Reviews in Toxicology”, 27, 1997, p. 431–442.
  • [16] Daulton T.L., Little B.J., Jones-Meehan J., Blom D.A., Allard L.A.: Microbial reduction of chromium from the hexavalent to divalent state, „Geochimica et Cosmochimica Acta”, 71, 2007, p. 556–565.
  • [17] Desai C., Jain K., Madamwar D.: Hexavalent chromate reductase activity in cytosolic fractions of Pseudomonas sp. G1DM21 isolated from Cr(VI) contaminated industrial landfill, „Process Biochemistry”, 43, 2008, p. 713–721.
  • [18] Dvorak D.H., Hedin R.S., Edeborn H.M., McIntire P.E.: Treatment of metal-contaminated water using bacterial sulfate reduction. Results from pilot-scale reactors, „Biotechnology and Bioengineering”, 40, 1992, p. 609–616.
  • [19] Focardi S., Pepi M., Landi G., Gasperini S., Ruta M., Di Biasio P., Focardi S.: Hexavalent chromium reduction by whole cells and cell free extract of the moderate halophilic bacterial strain Halomonas sp. TA-04, „International Biodeterioration & Biodegradation”, 66, 2012, p. 63–70.
  • [20] Francis A.J. , Dodge C.J.: Anaerobic microbial remobilization of toxic metals coprecipitated with iron oxide, „Environmental Science & Technology”, 24, 1990, p. 373–378.
  • [21] Jimenez-Mejia R., Campos-Garcia J., Cervantes C.: Membrane topology of the chromate transporter ChrA of Pseudomonas aeruginosa, „FEMS Microbiology Letters”, 262, 2006, p.178–184.
  • [22] Kamaludeen S.P., Megharaj M., Juhasz A.L., Sethunathan N., Naidu R.: Chromium-microorganism interactions in soils: remediation implications, „Reviews of Environmental Contamination and Toxicology”, 178, 2003, p. 93–164.
  • [23] Kimbrough D.E., Cohen Y., Winer A.M., Creelman L., Mabuni C.: A critical assessment of chromium in the environment, „Critical Reviews in Environmental Science and Technology”, 29, 1999, p. 1–46.
  • [24] Kotaś J., Stasicka Z.: Chromium occurrence in the environment and methods of its speciation, „Environmental Pollution”, 107, 2000, p. 263–283.
  • [25] Kwak Y.H., Lee D.S., Kim H.B.: Vibrio harveyi nitroreductase is also a chromate reductase, „Applied and Environmental Microbiology”, 69, 2003, p. 4390–4395.
  • [26] Laxman R.S, More S.: Reduction of hexavalent chromium by Streptomyces griseus, „Minerals Engineering”, 15, 2002, p. 831–837.
  • [27] Myers M.J., Antholine W.E., Myers C.R.: The intracellular redox stress caused by hexavalent chromium is selective for proteins that have key roles in cell survival and thiol redox control, „Toxicology”, 281, 2011, p. 37–47.
  • [28] Nies D.H.: Efflux-mediated heavy metal resistance in prokaryotes, „FEMS Microbiology Reviews”, 27, 2003, p. 313–339.
  • [29] Park C.H., Keyhan M., Wielinga B., Fendorf S., Martin A.: Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase, „Applied Environmental Microbiology”, 66, 2000, p. 1788–1795.
  • [30] Patra R.C., Malik S., Beer M., Megharaj M., Naidu R.: Molecular characterization of chromium(VI) reducing potential in Gram positive bacteria isolated from contaminated sites, „Soil Biology & Biochemistry”, 42, 2010, p.1857–1863.
  • [31] Ramirez-Diaz M.I., Diaz-Magana A., Meza-Carmen V., Johnstone L., Cervantes C., Rensing C.: Nucleotide sequence of Pseudomonas aeruginosa conjugative plasmid pUM505 containing virulence and heavy-metal resistance genes, „Plasmid”, 66, 2011, p. 7–18.
  • [32] Ramirez-Diaz M.I., Diaz-Perez C., Vargas E., Riveros-Rosas H., Campos-Garcia J., Cervantes C.: Mechanisms of bacterial resistance to chromium compounds, „Biometals”, 21, 2008, p. 321–332.
  • [33] Sahaa B., Orvig C.: Biosorbents for hexavalent chromium elimination from industrial and municipal effluents, „Coordination Chemistry Reviews”, 254, 2010, p. 2959–2972.
  • [34] Sarangi A., Krishnan C.: Comparison of in vitro Cr(VI) reduction by CFEs of chromate resistant bacteria isolated from chromate contaminated soil, „Bioresource Technology”, 99, 2008, p. 4130–4137.
  • [35] Shanker A.K., Cervantes C., Loza-Tavera H., Avudainayagam S.: Chromium toxicity in plants, „Environment International”, 31, 2005, p. 739–753.
  • [36] So-Young K., Jong-Un L., Kyoung-Woong K.: Biosorption of Cr(III) and Cr(VI) onto the cell surface of Pseudomonas aeruginosa, „Biochemical Engineering Journal”, 36, 2007, p. 54–58.
  • [37] Srinath T., Verma T., Ramteke P.W., Garg S.K.: Chromium(VI) biosorption and bioaccumulation by chromate resistant bacteria, „Chemosphere”, 48, 2002, p. 427–435.
  • [38] Suzuki T., Miyata N., Horitsu H., Kawai K., Takamizawa K., Tai Y., Okazaki M.: NAD(P)H-dependent chromium(VI) reductase of Pseudomonas ambigua G-1: a Cr(V) intermediate is formed during the reduction of Cr(VI) to Cr(III), „Journal of Bacteriology”, 174, 1992, p. 5340–5345.
  • [39] Tabak H.H., Lens P., van Hullebusch E.D., Dejonghe W.: Developments in bioremediation of soils and sediments polluted with metals and radionuclides. Microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport, „Reviews in Environmental Science and Biotechnology”, 4, 2005, p. 115–156.
  • [40] Thacker U., Parikh R., Shouche Y., Madamwar D.: Reduction of chromate by cell-free extract of Brucella sp. isolated from Cr(VI) contaminated sites, „Bioresource Technology”, 98, 2007, p. 1541–1547.
  • [41] Zayed A, Terry N.: Chromium in the environment: factors affecting biological remediation, „Plant Soil”, 249, 2003, p.139–156.
  • [42] Ziagova M., Dimitriadis G., Aslanidou D., Papaioannou X., Litopoulou Tzannetaki E., Liakopoulou-Kyriakides M.: Comparative study of Cd(II) and Cr(VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in single and binary mixtures, „Bioresource Technology”, 98, 2007, p. 2859–2865
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2ebb630-36ee-4538-90ef-2d63806d9eb1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.