PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of a machine learning model for forecasting freight rate in road transport

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recent global trends related to the forecasting freight prices is a complex task that involves considering various factors and variables that can affect the pricing dynamics in the sustainable transportation industry and business. Since freight price forecasting is subject to various uncertainties, including unforeseen events and market fluctuations, scientists are working on methods and tools, which also include artificial intelligence methods, to improve this process. The research purpose of this study is to present a universal machine learning based method enabling forecast freight prices for decision-making in the field of road transport. The paper presents the methodological assumptions of the model and shows an example of its use. The analysis was carried out with Python programming language and experiments were performed in Jupyter Notebook. Pandas library was used in research. The influence of individual variables was demonstrated using the eli5 library. The analysis allowed to conclude that machine learning models can be effective in forecasting freight prices in the context of sustainable transport due to their ability to capture complex patterns and relationships in large datasets.
Rocznik
Tom
Strony
23--48
Opis fizyczny
Bibliogr. 70 poz.
Twórcy
  • Institute of Quality Science and Product Management, The Cracov University of Economics, Rakowicka 27 Street, 31-510 Cracow, Poland
  • Faculty of Transport and Aviation Engineering, The Silesian University of Technology, Krasińskiego 8 Street, 40-019 Katowice, Poland
Bibliografia
  • 1. Behar Alberto, Venables Anthony. 2011. „Transport costs and international trade. A handbook of transport economics. In A Handbook of Transport Economics , edited by André de Palma, Robin Lindsey, Emile Quinet, and Roger Vickerman, 97. ISBN: 9781847202031.
  • 2. UNCTAD. 2022. „Review of maritime transport” In: Proceedings of the United Nation Conference on Trade and Development. Genewa
  • 3. Placek Martin. „Road freight transport revenue worldwide 2019-2022”. Available at: https://www.statista.com/statistics/1288518/road-freight-transport-revenue-worldwide.
  • 4. Eurostat. „International trade in goods by mode of transport”. Available at: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=International_trade_in_goods_by_mode_of_transport.
  • 5. Ti-insight. „European Road Freight Transport 2023”. 2023. Report. Bath, UK.
  • 6. Schnepf Randy. 2006. „Price determination in agricultural commodity markets: a primer”. Congressional Research Service, Library of Congress. Available at: http://research.policyarchive.org/2678.pdf.
  • 7. Volpe Richard, Roeger Edward, Leibtag Ephraim. 2013. How transportation costs affect fresh fruit and vegetable prices. Washington: Department of Agriculture, Economic Research Service.
  • 8. Melas Konstantinos, Michail Nektarios. 2021. „The relationship between commodity prices and freight rates in the dry bulk shipping segment: A threshold regression approach”. Maritime Transport Research. ISSN: 2666-822X. DOI: https://doi.org/10.1016/j.martra.2021.100025.
  • 9. De Bok Michiel, Bart Wesseling, Jan Kiel, Onno Miete, Jan Francke. „A sensitivity analysis of freight transport forecasts for The Netherlands”. International Journal of Transport Economics. 45(4): 571-587. DOI: https://doi.org/10.19272/201806704003.
  • 10. Saeed, Naima, Su Nguyen, Kevin Cullinane, Victor Gekara, and Prem Chhetri. „Forecasting Container Freight Rates Using the Prophet Forecasting Method”. Transport Policy 133(2023): 86-107. DOI: https://doi.org/10.1016/j.tranpol.2023.01.012.
  • 11. Nielsen Peter, Liping Jiang, Niels Gorm, Malý Rytter, Gang Chen. 2014. „An Investigation of Forecast Horizon and Observation Fit’s Influence on an Econometric Rate Forecast Model in the Liner Shipping Industry”. Maritime Policy & Management 41(7): 667-82. DOI: https://doi.org/10.1080/03088839.2014.960499.
  • 12. Chen, Yanhui, Bin Liu, Tianzi Wang. 2021. „Analysing and Forecasting China Containerized Freight Index with a Hybrid Decomposition-Ensemble Method Based on EMD, Grey Wave and ARMA”. Grey Systems: Theory and Application 11(3): 358-71. ISSN: 2043-9377. DOI: https://doi.org/10.1108/GS-05-2020-0069.
  • 13. Jeon, Jun-Woo, Okan Duru, Ziaul Haque Munim, Naima Saeed. 2021. „System Dynamics in the Predictive Analytics of Container Freight Rates”. Transportation Science 55(4): 946-67. ISSN: 0041-1655. DOI: https://doi.org/10.1287/trsc.2021.1046.
  • 14. Munim, Ziaul Haque, Hans-Joachim Schramm. 2017. „Forecasting Container Shipping Freight Rates for the Far East – Northern Europe Trade Lane”. Maritime Economics & Logistics 19(1): 106-25. ISSN: 1479-2931. DOI: https://doi.org/10.1057/s41278-016-0051-7.
  • 15. Schramm, Hans-Joachim, Ziaul Haque Munim. 2021. „Container Freight Rate Forecasting with Improved Accuracy by Integrating Soft Facts from Practitioners”. Research in Transportation Business & Management 41 (December): 100662. ISSN: 2210-5395. DOI: https://doi.org/10.1016/j.rtbm.2021.100662.
  • 16. Slack, Brian, Elisabeth Gouvernal. 2011. „Container Freight Rates and the Role of Surcharges”. Journal of Transport Geography 19 (6): 1482-89. ISSN: 0966-6923. DOI: https://doi.org/10.1016/j.jtrangeo.2011.09.003.
  • 17. Batchelor, Roy, Amir Alizadeh, Ilias Visvikis. 2007. „Forecasting Spot and Forward Prices in the International Freight Market”. International Journal of Forecasting 23(1): 101-14. ISSN: 0169-2070. DOI: https://doi.org/10.1016/j.ijforecast.2006.07.004.
  • 18. Chen, Shun, Hilde Meersman, Eddy Van De Voorde. 2012. „Forecasting Spot Rates at Main Routes in the Dry Bulk Market”. Maritime Economics & Logistics 14(4): 498-537. ISSN: 1479-2931. DOI: https://doi.org/10.1057/mel.2012.18.
  • 19. Li, Kevin X., Yi Xiao, Shu-Ling Chen, Wei Zhang, Yuquan Du, Wenming Shi. 2018. „Dynamics and Interdependencies among Different Shipping Freight Markets”. Maritime Policy & Management 45(7): 837-49. https://doi.org/10.1080/03088839.2018.1488187.
  • 20. Dikos George, Henry S. Marcus, Martsin Panagiotis Papadatos, Vassilis Papakonstantinou. 2006. „Niver Lines: A System-Dynamics Approach to Tanker Freight Modeling”. Interfaces 36(4): 326-41. https://doi.org/10.1287/inte.1060.0218.
  • 21. Kabir Abdulmajeed, Monsuru Adeleke, Labode Popoola. 2020. „Online forecasting of COVID-19 cases in Nigeria using limited data”. Data in Brief 30: 105683. ISSN: 2352-3409. DOI: https://doi.org/10.1016/j.dib.2020.105683.
  • 22. Kasimati Evangelia, Nikolaos Veraros. 2018. „Accuracy of Forward Freight Agreements in Forecasting Future Freight Rates”. Applied Economics 50(7): 743-56. ISSN: 0003-6846. DOI: https://doi.org/10.1080/00036846.2017.1340573.
  • 23. Munim Ziaul Haque. 2022. „State-Space TBATS Model for Container Freight Rate Forecasting with Improved Accuracy”. Maritime Transport Research 3: 100057. ISSN: 2666-822X. DOI: https://doi.org/10.1016/j.martra.2022.100057.
  • 24. Duru Okan, Emrah Gulay, Korkut Bekiroglu. 2023. „Predictability of the Physical Shipping Market by Freight Derivatives”. IEEE Transactions on Engineering Management 70(1): 267-79. ISSN: 0018-9391. DOI: https://doi.org/10.1109/TEM.2020.3046930.
  • 25. Lam Jasmine Siu Lee, Qingyao Li, Shuyi Pu. 2021. „Volatility and Uncertainty in Container Shipping Market“. In: New Maritime Business, edited by Byoung-Wook Ko and Dong-Wook Song, 10: 11-32. WMU Studies in Maritime Affairs. Cham: Springer International Publishing. ISBN: 978-3-030-78956-5 978-3-030-78957-2.
  • 26. Choudhary, Ankur, Santosh Kumar, Manish Sharma, K.P. Sharma. 2022. „A Framework for Data Prediction and Forecasting in WSN with Auto ARIMA”. Wireless Personal Communications 123(3): 2245-59. ISNN: 0929-6212. DOI: https://doi.org/10.1007/s11277-021-09237-x.
  • 27. Al-Qazzaz Redha Ali, Suhad Yousif. 2022. ”High Performance Time Series Models Using Auto Autoregressive Integrated Moving Average”. Indonesian Journal of Electrical Engineering and Computer Science 27(1): 422. ISSN: 2502-4760. DOI: https://doi.org/10.11591/ijeecs.v27.i1.pp422-430.
  • 28. Nguyen Huy Vuong, M. Asif Naeem, Nuttanan Wichitaksorn, Russel Pears. 2019. „A Smart System for Short-Term Price Prediction Using Time Series Models”. Computers & Electrical Engineering 76(June): 339-52. ISSN: 0045-7906. DOI: https://doi.org/10.1016/j.compeleceng.2019.04.013.
  • 29. Kumar Dubey Ashutosh, Abhishek Kumar, Vicente García-Díaz, Arpit Kumar Sharma, Kishan Kanhaiya. 2021. ‚Study and Analysis of SARIMA and LSTM in Forecasting Time Series Data”. Sustainable Energy Technologies and Assessments 47(October): 101474. ISSN: 2213-1388 https://doi.org/10.1016/j.seta.2021.101474.
  • 30. Makridakis Spyros, Evangelos Spiliotis, Vassilios Assimakopoulos. 2020. „The M4 Competition: 100,000 Time Series and 61 Forecasting Methods”. International Journal of Forecasting 36(1): 54-74. ISSN: 0169-2070. DOI: https://doi.org/10.1016/j.ijforecast.2019.04.014.
  • 31. Mazanec Jaroslav, Veronika Harantová, Vladimíra Štefancová, Hana Brůhová Foltýnová. 2023. „Estimating Mode of Transport in Daily Mobility during the COVID-19 Pandemic Using a Multinomial Logistic Regression Model”. International Journal of Environmental Research and Public Health 20(5): 4600. ISSN: 1660-4601. DOI: https://doi.org/10.3390/ijerph20054600.
  • 32. Al Hasan Mohammad, Li Xiong. 2022. „Do simpler statistical methods perform better in multivariate long sequence time-series forecasting? ”. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management. Atlanta GA USA: ACM.
  • 33. Hyndman, Rob J., Yeasmin Khandakar. 2008. „Automatic Time Series Forecasting: The Forecast Package for R”. Journal of Statistical Software 27(3). ISSN: 1548-7660. DOI: https://doi.org/10.18637/jss.v027.i03.
  • 34. Navratil Miroslav, Andrea Kolkova. 2019. „Decomposition and Forecasting Time Series in the Business Economy Using Prophet Forecasting Model”. Central European Business Review 8(4): 26-39. ISSN: 18054854. DOI: https://doi.org/10.18267/j.cebr.221.
  • 35. Papacharalampous Georgia A., Hristos Tyralis. 2018. „Evaluation of Random Forests and Prophet for Daily Streamflow Forecasting”. Advances in Geosciences 45(August): 201-8. ISSN: 1680-7359. DOI: https://doi.org/10.5194/adgeo-45-201-2018.
  • 36. Chuwang Dung David, Weiya Chen. 2022. „Forecasting Daily and Weekly Passenger Demand for Urban Rail Transit Stations Based on a Time Series Model Approach”. Forecasting 4(4): 904-24. ISSN: 2571-9394. DOI: https://doi.org/10.3390/forecast4040049.
  • 37. Widodo Agus, Indra Budi, Belawati Widjaja. 2016. „Automatic Lag Selection in Time Series Forecasting Using Multiple Kernel Learning”. International Journal of Machine Learning and Cybernetics 7(1): 95-110. ISSN: 1868-8071. DOI: https://doi.org/10.1007/s13042-015-0409-7.
  • 38. Mrowczynska Bogna, Maria Ciesla, Aleksander Krol, Aleksander Sladkowski. 2017. „Application of Artificial Intelligence in Prediction of Road Freight Transportation”. PROMET – Traffic&Transportation 29(4): 363-70. ISSN: 1848-4069. DOI: https://doi.org/10.7307/ptt.v29i4.2227.
  • 39. Züfle Marwin, Samuel Kounev. 2020. „A Framework for Time Series Preprocessing and History-Based Forecasting Method Recommendation”. In: Proceedings of the 2020 Federated Conference on Computer Science and Information Systems, edited by M. Ganzha, L. Maciaszek, M. Paprzycki, ACSIS: 141-44.
  • 40. Martínez Francisco, María Pilar Frías, María Dolores Pérez, Antonio Jesús Rivera. 2019. „A Methodology for Applying K-Nearest Neighbor to Time Series Forecasting”. Artificial Intelligence Review 52(3): 2019-37. ISSN: 0269-2821. DOI: https://doi.org/10.1007/s10462-017-9593-z.
  • 41. Bogachev Taras, Tamara Alekseychik, Anatoly Chuvenkov, Svetlana Batygova. 2021. „Comparative Assessment of the Regional Freight Transportation by Method of Fuzzy Linear Regression”. In: 14th International Conference on Theory and Application of Fuzzy Systems and Soft Computing – ICAFS-2020, edited by Rafik A. Aliev, Janusz Kacprzyk, Witold Pedrycz, Mo Jamshidi, Mustafa Babanli, Fahreddin M. Sadikoglu, 1306: 102-9. Advances in Intelligent Systems and Computing. Cham: Springer International Publishing. ISBN: 978-3-030-64057-6 978-3-030-64058-3.
  • 42. Khan Ibraheem Abdulhafiz, Farookh Khadeer Hussain. 2022. „Regression Analysis Using Machine Learning Approaches for Predicting Container Shipping Rates”. In: Advanced Information Networking and Applications, edited by Leonard Barolli, Farookh Hussain, and Tomoya Enokido, 450: 269-80. Lecture Notes in Networks and Systems. Cham: Springer International Publishing. ISBN: 978-3-030-99586-7. DOI: https://doi.org/10.1007/978-3-030-99587-4_23.
  • 43. Koyuncu Kaan, Leyla Tavacioğlu. 2021. „Forecasting Shanghai Containerized Freight Index by Using Time Series Models”. Marine Science and Technology Bulletin 10(4): 426-34. ISSN: 2147-9666. DOI: https://doi.org/10.33714/masteb.1024663.
  • 44. Bashir Sara, Milan Zlatkovic. 2021. „Assessment of Queue Warning Application on Signalized Intersections for Connected Freight Vehicles”. Transportation Research Record: Journal of the Transportation Research Board 2675(10): 1211-21. DOI: https://doi.org/10.1177/03611981211015247.
  • 45. Gladchenko E.A., O.N. Saprykin, AN. Tikhonov. 2019. „Optimization of urban freight transportation based on evolutionary modelling”. In: CEUR Workshop Proceedings 2019”: 95-103.
  • 46. Kluyver Thomas, Ragan-Kelley Benjamin, Pérez Fernando, Granger Brian, Bussonnier Matthias, Frederic Jonathan, Kelley Kyle, Hamrick Jessica, Grout Jason, Corlay Sylvain, Ivanov Paul, Avila Damián, Abdalla Safia, Willing Carol. 2016. „Jupyter Notebooks – a publishing format for reproducible computational workflows”. In: 20th International Conference on Electronic Publishing”: 87-90.
  • 47. McKinney Wes. 2010. „Data Structures for Statistical Computing in Python”. In: Proc. of the 9th Python in Science Conf. (SCIPY 2010): 56-61. Austin, Texas. DOI: https://doi.org/10.25080/Majora-92bf1922-00a.
  • 48. Waskom Michael. 2021. „Seaborn: Statistical Data Visualization”. Journal of Open Source Software 6(60): 3021. DOI: https://doi.org/10.21105/joss.03021.
  • 49. Hunter John D. 2007. „Matplotlib: A 2D Graphics Environment”. Computing in Science & Engineering 9(3): 90-95. DOI: https://doi.org/10.1109/MCSE.2007.55.
  • 50. Pedregosa Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, et al. 2012. „Scikit-Learn: Machine Learning in Python”. arXiv: 1201.0490. DOI: https://doi.org/10.48550/ARXIV.1201.0490.
  • 51. Built-in Types. The Python Standard Library. Available at: https://docs.python.org/3/library/stdtypes.html.
  • 52. Eur-Lex. Regulation (EC) No 561/2006 of the European Parliament and of the Council of 15 March 2006 on the harmonisation of certain social legislation relating to road transport. 2006. Available at: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32006R0561.
  • 53. Nowakowska-Grunt Joanna, Monika Strzelczyk. 2019. „The Current Situation and the Directions of Changes in Road Freight Transport in the European Union”. Transportation Research Procedia 39: 350-59. ISSN: 2352-1465. DOI: https://doi.org/10.1016/j.trpro.2019.06.037.
  • 54. Eurostat. Road freight transport performance by type of operation, 2017-2021. Available at: https://ec.europa.eu/eurostat/databrowser/product/page/ROAD_GO_TA_TOTT.
  • 55. Eurostat. Road freight transport performance by distance class, 2021. Available at: https://ec.europa.eu/eurostat/databrowser/view/ROAD_GO_TA_DC/default/table?lang=en&category=road.road_go.road_go_tot.
  • 56. Inkinen Tommi, Esa Hämäläinen. 2020. „Reviewing Truck Logistics: Solutions for Achieving Low Emission Road Freight Transport”. Sustainability 12(17): 6714. DOI: https://doi.org/10.3390/su12176714.
  • 57. Zgonc Borut, Metka Tekavčič, Marko Jakšič. 2019. „The Impact of Distance on Mode Choice in Freight Transport”. European Transport Research Review 11(1): 10. ISSN: 1867-0717. DOI: https://doi.org/10.1186/s12544-019-0346-8.
  • 58. den Boer Eelco, Essen Huib, Brouwer Femke, Pastori Enrico, Moizo Alessandra. 2011. Potential of modal shift to rail transport-Study on the projected effects on GHG emissions and transport volumes. CE Delft. Publication No. 11.4255.15.
  • 59. Kot Sebastian. 2015. ”Cost Structure in Relation to the Size of Road Transport Enterprises”. PROMET - Traffic&Transportation 27(5): 387-94. ISSN: 1848-4069. DOI: https://doi.org/10.7307/ptt.v27i5.1687.
  • 60. Lükewille Anke, Imrich Bertok, Markus Amann, Janusz Cofala, Frantisek Gyarfas, Chris Heyes, Niko Karvosenoja, Zbigniew Klimont, Wolfgang Schöpp. 2021. A Framework to Estimate the Potential and Costs for the Control of Fine Particulate Emissions in Europe. IIASA Interim Report. IIASA, Laxenburg, Austria: IR-01-023.
  • 61. Poliak Miloš, Patricia Šimurková, Kelvin Cheu. 2019. „Wage Inequality Across The Road Transport Sector Within the Eu”. Transport Problems 14(2): 145-53. ISSN: 1896-0596. DOI: https://doi.org/10.20858/tp.2019.14.2.13.
  • 62. Persyn, Damiaan, Jorge Díaz-Lanchas, Javier Barbero. 2022. „Estimating Road Transport Costs between and within European Union Regions”. Transport Policy 124 (August): 33-42. ISSN: 0967-070X. DOI: https://doi.org/10.1016/j.tranpol.2020.04.006.
  • 63. Poliak Milos, Adela Poliakova, Lucie Svabova, Natalia Aleksandrovna Zhuravleva, Elvira Nica. 2021. „Competitiveness of Price in International Road Freight Transport”. Journal of Competitiveness 13(2): 83-98. ISSN: 1804-171X. DOI: https://doi.org/10.7441/joc.2021.02.05.
  • 64. Liachovičius Edvardas, Viktor Skrickij. 2020. „The Challenges and Opportunities for Road Freight Transport“. In: TRANSBALTICA XI: Transportation Science and Technology, edited by Kasthurirangan Gopalakrishnan, Olegas Prentkovskis, Irina Jackiva, Raimundas Junevičius, 455-65. Lecture Notes in Intelligent Transportation and Infrastructure. Cham: Springer International Publishing.
  • 65. Konečný Vladimír, Semanová Štefánia, Gnap Jozef, Stopka Ondrej. 2018. ”Taxes and Charges in Road Freight Transport – a Comparative Study of the Level of Taxes and Charges in the Slovak Republic and the Selected EU Countries”. Naše More 65(4): 208-12. ISBN: 978-3-030-38665-8. DOI: https://doi.org/10.17818/NM/2018/4SI.8.
  • 66. Hájek Miroslav, Jarmila Zimmermannová, Karel Helman. 2021. „Environmental Efficiency of Economic Instruments in Tansport in EU Countries”. Transportation Research Part D: Transport and Environment 100 (November): 103054. ISSN: 1361-9209. DOI: https://doi.org/10.1016/j.trd.2021.103054.
  • 67. Siksnelyte-Butkiene Indre, Dalia Streimikiene. 2022. „Sustainable Development of Road Transport in the EU: Multi-Criteria Analysis of Countries Achievements”. Energies 15(21): 8291. ISSN: 1996-1073. DOI: https://doi.org/10.3390/en15218291.
  • 68. Amaruchkul Kannapha, Akkaranan Pongsathornwiwat, Purinut Bantadtiang. 2022. „Constrained Joint Replenishment Problem with Refrigerated Vehicles”. Engineering Journal 26(1): 75-91. ISSN: 01258281. DOI: https://doi.org/10.4186/ej.2022.26.1.75.
  • 69. Kubáňová Jaroslava, Iveta Kubasáková, Dočkalik. 2021. „Analysis of the Vehicle Fleet in the EU with Regard to Emissions Standards”. Transportation Research Procedia 53: 180-87. DOI: https://doi.org/10.1016/j.trpro.2021.02.024.
  • 70. ACEA. Zero-emission trucks require radical policy changes, says ACEA as new fleet data is released. Available at: https://www.acea.auto/press-release/zero-emission-trucks-require-radical-policy-changes-says-acea-as-new-fleet-data-is-released/
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2eba32b-4e20-4488-ac08-67cbfe2677dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.