Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Wykorzystanie sztucznych sieci neuronowych do prognozowania zmienności przestrzennej jakości ziarna podczas zbioru kombajnowego pszenicy
Języki publikacji
Abstrakty
The aim of the study was to attempt to build and validate the neural model controlling the qualitative selection of the stream of grain mass as early as the stage of combine harvesting of winter wheat. The model uses the highest possible number of data describing locally changeable environmental conditions such as: protein content, moisture and yield of wheat grain, soil abundance in basic nutrients (total Kjeldahl nitrogen, exchangeable phosphorus and potassium, magnesium) and additionally - the pH coefficient, content of organic matter in soil and the relative altitude. The construction of the neural model was preceded with a multiple regression analysis. The results of the analysis (α = 0.05) indicated statistical significance of all of the traits under analysis, which influence grain quality and are defined as the content of protein. The MLP neural network (9-30-1) consisted of one hidden layer containing 30 neurons, one output and nine inputs. The network learning was done with the BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm in a single phase during 827 epochs with the SOS error function. The study was a part of the development project No. R12 0073 06 entitled “Development and validation of the technology for separation grain stream during cereals selective harvesting”, financed by the Polish National Centre for Research and Development.
Celem pracy było podjęcie próby budowy i walidacji modelu neuronowego sterującego selekcją jakościową strumienia masy ziarna już na etapie kombajnowego zbioru pszenicy ozimej. Model wykorzystuje jak najwięcej danych opisujących lokalnie zmienne warunki środowiskowe takie jak: zawartości białka, wilgotność i wielkość plonu ziarna pszenicy, zasobność gleby w podstawowe składniki pokarmowe (azot ogólny, fosfor i potas wymienny, magnez) oraz dodatkowo współczynnik pH, zawartość materii organicznej w glebie oraz wysokość względną NPM. Budowę modelu neuronowego poprzedzono analizą regresji wielorakiej. Wyniki tej analizy na poziomie α = 0,05 wskazały istotność statystyczną wszystkich badanych cech wpływających na jakość ziarna zdefiniowaną jako zawartość białka. Zbudowana sieć neuronowa typu MLP (9-30-1) składała się jednej warstwy ukrytej zawierającej 30 neuronów, jednego wyjścia i dziewięciu wejść. Uczenie sieci z wykorzystaniem algorytmu BFGS wykonano jednofazowo w trakcie 827 epok z funkcją błędu SOS. Pracę zrealizowano w ramach projektu rozwojowego nr R12 0073 06 pt: „Opracowanie i walidacja technologii rozdziału strumienia ziarna podczas selektywnego zbioru zbóż” finansowanego przez NCBIR.
Rocznik
Tom
Strony
126--129
Opis fizyczny
Bibliogr. 16 poz., tab.
Twórcy
autor
- Uniwersytet Przyrodniczy w Poznaniu, Instytut Inżynierii Biosystemów ul. Wojska Polskiego 28, 60-637 Poznań, Poland
autor
- Uniwersytet Przyrodniczy w Poznaniu, Instytut Inżynierii Biosystemów ul. Wojska Polskiego 28, 60-637 Poznań, Poland
autor
- Uniwersytet Przyrodniczy w Poznaniu, Instytut Inżynierii Biosystemów ul. Wojska Polskiego 28, 60-637 Poznań, Poland
Bibliografia
- [1] Alvarez R.: Predicting average regional yield and production of wheat in the Argentinian Pampas with an artificial neural network approach. European Journal of Agronomy, 2009, 30(2): 70-77.
- [2] Dreszer K.A., Gieroba J., Roszkowski A.: Kombajnowy zbiór zbóż. Warszawa: IBMER, (Chapter 2), 1998.
- [3] Fiez T.E., Miller B.C., Pan W.L.: Winter wheat yield and grain protein across varied landscape positions. Agronomy Journal, 1994, 86, 1026-1032.
- [4] Huang Y., Lan Y., Thomson S. J., Fang A., Hoffmann W. C., Lacey R. E.: Development of soft computing and applications in agricultural and biological engineering. Computers and Electronics in Agriculture, 2010, 71(2), 107-127.
- [5] Jadczyszyn T.: Zmienność gleb, plonów i potrzeb nawozowych w granicach pola produkcyjnego. Inżynieria Rolnicza, 2001, 13 (33), 168-173.
- [6] Kollárová K., Krajčo J., Plačko M., Rutkowski K.: Ocena zmienności przestrzennej wilgotności gleby na podstawie map konduktywności elektrycznej. Inżynieria Rolnicza, 2007, 6(94), 73-80.
- [7] Long D.S., Engel R.E., Carpenter F.M.: On-Combine Sensing and Mapping of Wheat Protein Concentration, Crop Management (On-line), Published 27 May, 2005.
- [8] Maertens K., Reyns P., De Baerdemaeker J.: On-line measurement of grain quality with NIR technology. Transactions of the ASAE, 2004, 47(4), 1135-1140.
- [9] Moore I.D., Gessler P.E., Nielsen G.A., Peterson G.A.: Soil attribute prediction using terrain analysis. Soil Science of America Journal, 1993, 57:443-452.
- [10] Niedbała G., Czechlowski M., Wojciechowski T.: The use of artificial neural networks to predict the spatial variability of grain quality during combine harvest of wheat. Proceedings of the International Conference of Agricultural Engineering CIGR-AgEng2012, Valencia, Spain, July 8-12, 2012, P2112.
- [11] Nolan S.C., Goddard T.W., Penney D.C., Green, F.M.: Yield response to nitrogen within landscape classes. Proceedings of the 4th International Conference on Precision Agriculture, St. Paul, MN, July 19-22, 1998, 479-485.
- [12] Risius H., Hahn J., Huth M., Korte H., Luetke Harmann T.: Near Infrared Spectroscopy for Sorting Grain according to Specified Quality Parameters on a Combine Harvester. In B.: 67th International Conference on Agricultural Engineering LAND.TECHNIK AgEng (pp. 187-192), Stuttgart-Hohenheim: VDI, Germany, 2008.
- [13] Risius H., Hahn J., Korte H.: Monitoring of grain quality and segregation of grain according to protein concentration threshold on an operating combine harvester. In B.: Book of Abstracts XVII.th World Congress of the International Commission of Agricultural and Biosystems Engineering (CIGR | SCGAB) (pp. 28), Québec City: QC, Canada, 2010.
- [14] Stewart C.M., McBratney A.B., Skerritt J.H.: Site-specific Durum wheat quality and its relationship to soil properties in a single field in Northern New South Wales. Precision Agriculture, 2002, 3, 155-168.
- [15] Taylor J.; Whelan B.; Thylén L., Gilbertsson M.; Hassall J.: Monitoring wheat protein content on-harvester – Australian experiences. In B. J. V. Stafford (Eds.) Precision agriculture '05, 5th European Conference on Precision Agriculture, Conference paper (pp. 369-375), Uppsala, Sweden, 2005.
- [16] Thylen L., Gilbbertsson M., Rosenthal T., Wrenn, S.: Sorting of Grain on the Farm - Experiences with an Online Protein Sensor. In B: D.E. Maier (Eds.) International Quality Grains Conference (pp. 1-8), Indianapolis: Purdue University, USA, 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2e5651a-ecf7-4fe1-a630-b87d6ecb69b8