PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On identities for derivative operators

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let X be a commutative algebra with unity e and let D be a derivative on X that means the Leibniz rule is satisfied: D(f\cdot g)=D(f)\cdot g+f\cdot D(g). If D^{(k)} is k-th iteration of D then we prove that the following identity holds for any positive integer k frac{1}{k!}\sum\limits_{j=0}^k(-1)^j\binom{k}{j}f^jD^{(m)}(gf^{k-j})=\Phi_{k,m}(g,f)=\begin{cases}0,\ 0\leq m As an application we prove a sharo version of Bernstein’s inequality for trigonometric polynomials.
Rocznik
Strony
13--16
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
  • Faculty of Mathematics, Physics and Technical Science, Pedagogical University, Podchorążych 2, 30-084 Kraków, Poland
  • Department of Mathematics, Faculty of Mathematical and Natural Sciences, University of Applied Sciences in Tarnow, Mickiewicza 8, 33-100 Tarnów, Poland
Bibliografia
  • [1] U. Abel, An identity for formal derivatives in a commutative algebra, Ann. Polon. Math. 119 (2017), no. 3, 195-202.
  • [2] M. Baran, New approch to Markov inequality in Lp norms, Approximation Theory: in Memory of A.K. Varma (N.K. Govil and alt., ed.), Marcel Dekker, New York (1998), 75-85.
  • [3] M. Baran, Polynomial inequalities in Banach spaces, Constructive approximation of functions, 2342, Banach Center Publ., 107, Polish Acad. Sci. Inst. Math., Warsaw, (2015).
  • [4] M. Baran, L. Białas-Cież, B. Milówka, On the best exponent in Markov inequality, Potential Analysis, 38 (2) (2013), 635–651.
  • [5] M. Baran, A. Kowalska, B. Milówka, P. Ozorka, Identities for a derivation operator and their applications, Dolomites Res. Notes Approx. 8 (2015), Special Issue, 102-110.
  • [6] M. Baran, B. Milówka, P. Ozorka, Markov’s property for k-th derivative, Annales Polonici Mathematici, 106 (2012), 31–40.
  • [7] P. Borwein, T. Erdélyi, Polynomials and Polynomial Inequalities, Springer, Berlin, 1995, Graduate Texts in Mathematics 161.
  • [8] M. Klimek, Remarks on derivations on normed algebras, Zeszyty Nauk. Uniw. Jagiello. Prace Mat. No. 20 (1979), 161-166.
  • [9] B. Milówka, Markov’s inequality and a generalized Plesniak condition, East J. Approx. 11 (2005), 291–300.
  • [10] Q. Rahman, G. Schmeisser, Analytic theory of polynomials, Clarendon Press, (2002).
  • [11] W. Rudin, Functional Analysis, McGraw-Hill Book
  • [12] E.M. Stein, Interpolation in polynomial classes and Markoff’s inequality, Duke Math. J. 24 (1957), 467-476.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2e186d4-0dcf-4790-b71a-ee39bfd7a028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.