Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A hyperjerk system is a dynamical system, which is modelled by an nth order ordinary differential equation with n 4 describing the time evolution of a single scalar variable. Equivalently, using a chain of integrators, a hyperjerk system can be modelled as a system of n first order ordinary differential equations with n 4. In this research work, a 4-D novel hyperchaotic hyperjerk system has been proposed, and its qualitative properties have been detailed. The Lyapunov exponents of the novel hyperjerk system are obtained as L1 = 0:1448;L2 = 0:0328;L3 = 0 and L4 = −1:1294. The Kaplan-Yorke dimension of the novel hyperjerk system is obtained as DKY = 3:1573. Next, an adaptive backstepping controller is designed to stabilize the novel hyperjerk chaotic system with three unknown parameters. Moreover, an adaptive backstepping controller is designed to achieve global hyperchaos synchronization of the identical novel hyperjerk systems with three unknown parameters. Finally, an electronic circuit realization of the novel jerk chaotic system using SPICE is presented in detail to confirm the feasibility of the theoretical hyperjerk model.
Czasopismo
Rocznik
Tom
Strony
135--158
Opis fizyczny
Bibliogr. 60 poz., rys., schem., wykr., wzory
Twórcy
autor
- Research and Development Centre, Vel Tech University, Avadi, Chennai-600062, Tamilnadu, India,
autor
- Physics Department, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
autor
- School of Electronics and Telecommunications, Hanoi University of Science and Technology, 01 Dai Co Viet, Hanoi, Vietnam
autor
- Department of Mathematics, Vel Tech University, Avadi, Chennai-600062, Tamilnadu, India
Bibliografia
- [1] K. T. Alligood, T. D. Sauer and J. A. Yorke: Chaos: An introduction to Dynamical Systems. New York, Springer-Verlag, 2000.
- [2] E. N. Lorenz: Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20 (1963), 130-141.
- [3] O. E. Rössler: An equation for continuous chaos. Physics Letters A, 57 (1976), 397-398.
- [4] A. Arneodo, P. Coullet and C. Tresser: Possible new strange attractors with spiral structure. Communications in Mathematical Physics, 79 (1981), 573-579.
- [5] J. C. Sprott: Some simple chaotic flows. Physical Review E, 50 (1994), 647- 650.
- [6] G. Chen and T. Ueta: Yet another chaotic attractor. International Journal of Bifurcation and Chaos, 9 (1999), 1465-1466.
- [7] J. Lü and G. Chen: A new chaotic attractor coined. International Journal of Bifurcation and Chaos, 12 (2002), 659-661.
- [8] C. X. Liu, T. Liu, L. Liu and K. Liu: A new chaotic attractor. Chaos, Solitons and Fractals, 22 (2004), 1031-1038.
- [9] G. Cai and Z. Tan: Chaos synchronization of a new chaotic system via nonlinear control. Journal of Uncertain Systems, 1 (2007), 235-240.
- [10] G. Tigan and D. Opris: Analysis of a 3D chaotic system. Chaos, Solitons and Fractals, 36 (2008), 1315-1319.
- [11] D. Li: A three-scroll chaotic attractor. Physics Letters A, 372 (2008), 387-393.
- [12] V. Sundarapandian and I. Pehlivan: Analysis, control, synchronization and circuit design of a novel chaotic system. Mathematical and Computer Modelling, 55 (2012), 1904-1915.
- [13] V. Sundarapandian: Analysis and anti-synchronization of a novel chaotic system via active and adaptive controllers. Journal of Engineering Science and Technology Review, 6 (2013), 45-52.
- [14] S. Vaidyanathan: A new six-term 3-D chaotic system with an exponential nonlinearity. Far East Journal of Mathematical Sciences, 79 (2013), 135-143.
- [15] S. Vaidyanathan: Analysis and adaptive synchronization of two novel chaotic systems with hyperbolic sinusoidal and cosinusoidal nonlinearity and unknown parameters. Journal of Engineering Science and Technology Review, 6 (2013), 53-65.
- [16] S. Vaidyanathan: A new eight-term 3-D polynomial chaotic system with three quadratic nonlinearities. Far East Journal of Mathematical Sciences, 84 (2014), 219-226.
- [17] S. Vaidyanathan: Analysis, control and synchronisation of a six-term novel chaotic system with three quadratic nonlinearities. International Journal of Modelling, Identification and Control, 22 (2014), 41-53.
- [18] S. Vaidyanathan and K. Madhavan: Analysis, adaptive control and synchronization of a seven-term novel 3-D chaotic system. International Journal of Control Theory and Applications, 6 (2013), 121-137.
- [19] S. Vaidyanathan: Analysis and adaptive synchronization of eight-term 3-D polynomial chaotic systems with three quadratic nonlinearities. European Physical Journal: Special Topics, 223 (2014), 1519-1529.
- [20] S. Vaidyanathan, Ch. Volos, V. T. Pham, K. Madhavan and B. A. Idowu: Adaptive backstepping control, synchronization and circuit simulation of a 3-D novel jerk chaotic system with two hyperbolic sinusoidal nonlinearities. Archives of Control Sciences, 24 (2014), 257-285.
- [21] S. Vaidyanathan: Generalised projective synchronisation of novel 3-D chaotic systems with an exponential non-linearity via active and adaptive control. International Journal of Modelling, Identification and Control, 22 (2014), 207-217.
- [22] I. Pehlivan, I. M. Moroz and S. Vaidyanathan: Analysis, synchronization and circuit design of a novel butterfly attractor. Journal of Sound and Vibration, 333 (2014), 5077-5096.
- [23] S. Jafari and J. C. Sprott: Simple chaotic flows with a line equilibrium. Chaos, Solitons and Fractals, 57 (2013), 79-84.
- [24] V. T. Pham, C. Volos, S. Jafari, Z. Wei and X.wang: Constructing a novel no-equilibrium chaotic system. International Journal of Bifurcation and Chaos, 24 (2014), 1450073.
- [25] J. M. Tuwankotta: Chaos in a coupled oscillators system with widely spaced frequencies and energy-preserving non-linearity. International Journal of Non- Linear Mechanics, 41 (2006), 180-191.
- [26] S. Behnia, S. Afrang, A. Akhshani and Kh. Mabhouti: A novel method for controlling chaos in external cavity semiconductor laser. Optik - International Journal for Light and Electron Optics, 124 (2013), 757-764.
- [27] P. Gaspard: Microscopic chaos and chemical reactions. Physica A: Statistical Mechanics and its Applications, 263 (1999), 315-328.
- [28] M. Kyriazis: Applications of chaos theory to the molecular biology of aging. Experimental Gerontology, 26 (1991), 569-572.
- [29] I. Suárez: Mastering chaos in ecology. Ecological Modelling, 117 (1999), 305- 314.
- [30] K. Aihira, T. Takabe and M. Toyoda: Chaotic neural networks. Physics Letters A, 144 (1990), 333-340.
- [31] Ch. K. Volos, I. M. Kyprianidis and I .N. Stouboulos: Experimental investigation on coverage performance of a chaotic autonomous mobile robot. Robotics and Autonomous Systems, 61 (2013), 1314-1322.
- [32] H. T. Yau and C. S. Shieh: Chaos synchronization using fuzzy logic controller. Nonlinear Analysis: Real World Applications, 9 (2008), 1800-1810.
- [33] Ch. K. Volos, I. M. Kyprianidis, I. N. Stouboulos and A. N. Anagnostopoulos: Experimental study of the dynamic behavior of a double scroll circuit. Journal of Applied Functional Analysis, 4 (2009), 703-711.
- [34] Ch. K. Volos, I. M. Kyrpianidis and I. N. Stouboulos: Image encryption process based on chaotic synchronization phenomena. Signal Processing, 93 (2013), 1328-1340.
- [35] Ch. K. Volos, I. M. Kkyrpianidis and I. N. Stouboulos: Text encryption scheme realized with a chaotic pseudo-random bit generator. Journal of Engineering Science and Technology Review, 6 (2013), 9-14.
- [36] K. M. Cuomo and A. V. Oppenheim: Circuit implementation of synchronized chaos with applications to communications. Physical Review Letters, 71 (1993), 65-68.
- [37] J. S. Lin, C. F. Huang, T. L. Liao and J. J. Yan: Design and implementation of digital secure communication based on synchronized chaotic systems. Digital Signal Processing, 20 (2010), 229-237.
- [38] A. A. Zaher and A. A-Rrezq: On the design of chaos-based secure communication systems. Communications in Nonlinear Science and Numerical Simulation, 16 (2011), 3721-3737.
- [39] J. C. Sprott: Elegant Chaos. Singapore, World Scientific, 2010.
- [40] C. Li, X. Liao and K. W. Wong: Lag synchronization of hyperchaos with application to secure communications. Chaos, Solitons and Fractals, 23 (2005), 183- 193.
- [41] T. I. Chien and T. L. Liao: Design of secure digital communication systems using chaotic modulation, cryptography and chaotic synchronization. Chaos, Solitons & Fractals, 24 (2005), 241-245.
- [42] Q. Zhang, L. Guo and X. Wei: A novel image fusion encryption algorithm based on DNA sequence operation and hyper-chaotic system. Optik - International Journal for Light and Electron Optics, 124 (2013), 3596-3600.
- [43] A. Buscarino, L. Fortuna and M. FrascaA: Experimental robust synchronization of hyperchaotic circuits. Physica D: Nonlinear Phenomena, 238 (2009), 1917-1922.
- [44] O. E. Rössler: An equation for hyperchaos. Physics Letters A, 71 (1979), 155- 157.
- [45] Q. Jia: Hyperchaos generated from the Lorenz chaotic system and its control. Physics Letters A, 366 (2007), 217-222.
- [46] A. Chen, J. Lu, J. Lü and S. Yu: Generating hyperchaotic Lü attractor via state feedback control. Physica A, 364 (2006), 103-110.
- [47] X. Li: Modified projective synchronization of a new hyperchaotic system via nonlinear control. Communications in Theoretical Physics, 52 (2009), 274-278.
- [48] J. Wang and Z. Chen: A novel hyperchaotic system and its complex dynamics. International Journal of Bifurcation and Chaos, 18 (2008), 3309-3324.
- [49] D. Ghosh and S. Bhattacharya: Projective synchronization of new hyperchaotic system with fully unknown parameters. Nonlinear Dynamics, 61 (2010), 11-21.
- [50] Q. Jia: Hyperchaos generated from the Lorenz chaotic system and its control. Physics Letters A, 366 (2007), 217-222.
- [51] S. Vaidyanathan: A ten-term novel 4-D hyperchaotic system with three quadratic nonlinearities and its control. International Journal of Control Theory and Applications, 6 (2013), 97-109.
- [52] S. Vaidyanathan, Ch. Volos and V. T. Pham: Hyperchaos, adaptive control and synchronization of a novel 5-D hyperchaotic system with three positive Lyapunov exponents and its SPICE implementation. Archives of Control Sciences, 24 (2014), 409-446.
- [53] S. H. Schot: Jerk: the time rate of change of acceleration. American Journal of Physics, 46 (1978), 1090-1094.
- [54] P. Coullet, C. Tresser and A. Arneodo: A transition to stochasticity for a class of forced oscillators. Physics Letters A, 72 (1979), 268-270.
- [55] Z. Elhadj and J. C. Sprott: Transformation of 4-D dynamical systems to hyperjerk form. Palestine Journal of Mathematics, 2 (2013), 38-45.
- [56] K. E. Chlouverakis and J. C. Sprott: Chaotic hyperjerk systems. Chaos, Solitons and Fractals, 28 (2006), 739-746.
- [57] G. Cai and W. Tu: Adaptive backstepping control of the uncertain unified chaotic system. International Journal of Nonlinear Science, 4 (2007), 17-24.
- [58] M.T. YASSEN: Controlling, synchronization and tracking chaotic Liu system using active backstepping design. Physics Letters A, 360 (2007), 582-587.
- [59] P. Grassberger and I. Procaccia: Measuring the strangeness of strange attractors. Physica D: Nonlinar Phenomena, 9 (1983), 189-208.
- [60] P. GrassbergerRASSBERGER and I. PROCACCIA: Characterization of strange attractors. Physical Review Letters, 50 (1983), 346-349.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2e05b6b-fcdf-47c5-b2ae-c9c2b6071597